矩陣求導公式【轉】

矩陣求導公式【轉載自】http://blog.sina.com.cn/s/blog_6c17a3a00100qg5w.html


基本公式:今天推導公式,發現居然有對矩陣的求導,狂汗--完全不會。不過還好網上有人總結了。吼吼,趕緊搬過來收藏備份。

Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'

1. 矩陣Y對標量x求導:

相當於每個元素求導數後轉置一下,注意M×N矩陣求導後變成N×M了

Y = [y(ij)] --> dY/dx = [dy(ji)/dx]

2. 標量y對列向量X求導:

注意與上面不同,這次括號內是求偏導,不轉置,對N×1向量求導後還是N×1向量

y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'

3. 行向量Y'對列向量X求導:

注意1×M向量對N×1向量求導後是N×M矩陣。

將Y的每一列對X求偏導,將各列構成一個矩陣。

重要結論:

dX'/dX = I

d(AX)'/dX = A'

4. 列向量Y對行向量X’求導:

轉化爲行向量Y’對列向量X的導數,然後轉置。

注意M×1向量對1×N向量求導結果爲M×N矩陣。

dY/dX' = (dY'/dX)'

5. 向量積對列向量X求導運算法則:

注意與標量求導有點不同。

d(UV')/dX = (dU/dX)V' + U(dV'/dX)

d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'

重要結論:

d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A

d(AX)/dX' = (d(X'A')/dX)' = (A')' = A

d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X

6. 矩陣Y對列向量X求導:

將Y對X的每一個分量求偏導,構成一個超向量。

注意該向量的每一個元素都是一個矩陣。

7. 矩陣積對列向量求導法則:

d(uV)/dX = (du/dX)V + u(dV/dX)

d(UV)/dX = (dU/dX)V + U(dV/dX)

重要結論:

d(X'A)/dX = (dX'/dX)A + X'(dA/dX) = IA + X'0 = A

8. 標量y對矩陣X的導數:

類似標量y對列向量X的導數,

把y對每個X的元素求偏導,不用轉置。

dy/dX = [ Dy/Dx(ij) ]

重要結論:

y = U'XV = ΣΣu(i)x(ij)v(j) 於是 dy/dX = [u(i)v(j)] = UV'

y = U'X'XU 則 dy/dX = 2XUU'

y = (XU-V)'(XU-V) 則 dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' - 2VU' + 0 = 2(XU-V)U'

9. 矩陣Y對矩陣X的導數:

將Y的每個元素對X求導,然後排在一起形成超級矩陣。

 

10.乘積的導數

d(f*g)/dx=(df'/dx)g+(dg/dx)f'

結論

d(x'Ax)=(d(x'')/dx)Ax+(d(Ax)/dx)(x'')=Ax+A'x   (注意:''是表示兩次轉置)

 

 

比較詳細點的如下:

 

 矩陣求導公式【轉】


矩陣求導公式【轉】

矩陣求導公式【轉】

矩陣求導公式【轉】

矩陣求導公式【轉】

 

http://lzh21cen.blog.163.com/blog/static/145880136201051113615571/

http://hi.baidu.com/wangwen926/blog/item/eb189bf6b0fb702b720eec94.html

 

其他參考:

 

Contents

  • Notation
  • Derivatives of Linear Products
  • Derivatives of Quadratic Products

Notation

  • d/dx (y) is a vector whose (i) element is dy(i)/dx
  • d/dx (y) is a vector whose (i) element is dy/dx(i)
  • d/dx (yT) is a matrix whose (i,j) element is dy(j)/dx(i)
  • d/dx (Y) is a matrix whose (i,j) element is dy(i,j)/dx
  • d/dX (y) is a matrix whose (i,j) element is dy/dx(i,j)

Note that the Hermitian transpose is not used because complex conjugates are not analytic.

In the expressions below matrices and vectors ABC do not depend on X.

Derivatives of Linear Products

  • d/dx (AYB) =A * d/dx (Y) * B
  • d/dx (Ay) =A * d/dx (y)
  • d/dx (xTA) =A
  • d/dx (xT) =I
  • d/dx (xTa) = d/dx (aTx) = a
  • d/dX (aTXb) = abT
  • d/dX (aTXa) = d/dX (aTXTa) = aaT
  • d/dX (aTXTb) = baT
  • d/dx (YZ) =Y * d/dx (Z) + d/dx (Y) * Z

Derivatives of Quadratic Products

  • d/dx (Ax+b)TC(Dx+e) = ATC(Dx+e) + DTCT(Ax+b)
  • d/dx (xTCx) = (C+CT)x
  • [C: symmetric]: d/dx (xTCx) = 2Cx
  • d/dx (xTx) = 2x
  • d/dx (Ax+b)T (Dx+e) = AT (Dx+e) + DT (Ax+b)
  • d/dx (Ax+b)T (Ax+b) = 2AT (Ax+b)
  • [C: symmetric]: d/dx (Ax+b)TC(Ax+b) = 2ATC(Ax+b)
  • d/dX (aTXTXb) = X(abT + baT)
  • d/dX (aTXTXa) = 2XaaT
  • d/dX (aTXTCXb) = CTXabT + CXbaT
  • d/dX (aTXTCXa) = (C + CT)XaaT
  • [C:Symmetric] d/dX (aTXTCXa) = 2CXaaT
  • d/dX ((Xa+b)TC(Xa+b)) = (C+CT)(Xa+b)aT

Derivatives of Cubic Products

  • d/dx (xTAxxT) = (A+AT)xxT+xTAxI

Derivatives of Inverses

  • d/dx (Y-1) = -Y-1d/dx (Y)Y-1

Derivative of Trace

Note: matrix dimensions must result in an n*n argument for tr().

  • d/dX (tr(X)) = I
  • d/dX (tr(Xk)) =k(Xk-1)T
  • d/dX (tr(AXk)) = SUMr=0:k-1(XrAXk-r-1)T
  • d/dX (tr(AX-1B)) = -(X-1BAX-1)T
    • d/dX (tr(AX-1)) =d/dX (tr(X-1A)) = -X-TATX-T
  • d/dX (tr(ATXBT)) = d/dX (tr(BXTA)) = AB
    • d/dX (tr(XAT)) = d/dX (tr(ATX)) =d/dX (tr(XTA)) = d/dX (tr(AXT)= A
  • d/dX (tr(AXBXT)) = ATXBT + AXB
    • d/dX (tr(XAXT)) = X(A+AT)
    • d/dX (tr(XTAX)) = XT(A+AT)
    • d/dX (tr(AXTX)) = (A+AT)X
  • d/dX (tr(AXBX)) = ATXTBT + BTXTAT
  • [C:symmetric] d/dX (tr((XTCX)-1A) = d/dX (tr(A (XTCX)-1) = -(CX(XTCX)-1)(A+AT)(XTCX)-1
  • [B,C:symmetric] d/dX (tr((XTCX)-1(XTBX)) = d/dX (tr( (XTBX)(XTCX)-1) = -2(CX(XTCX)-1)XTBX(XTCX)-1 + 2BX(XTCX)-1

Derivative of Determinant

Note: matrix dimensions must result in an n*n argument for det().

  • d/dX (det(X)) = d/dX (det(XT)) = det(X)*X-T
  • d/dX (det(AXB)) = det(AXB)*X-T
  • d/dX (ln(det(AXB))) = X-T
  • d/dX (det(Xk)) = k*det(Xk)*X-T
    • d/dX (ln(det(Xk))) = kX-T
  • [Real] d/dX (det(XTCX)) = det(XTCX)*(C+CT)X(XTCX)-1
  • [CReal,Symmetric] d/dX (det(XTCX)) = 2det(XTCX)* CX(XTCX)-1
  • [CReal,Symmetricc] d/dX (ln(det(XTCX))) = 2CX(XTCX)-1

Jacobian

If y is a function of x, then dyT/dx is the Jacobian matrix of y with respect to x.

Its determinant, |dyT/dx|, is the Jacobian of y with respect to x and represents the ratio of the hyper-volumes dy and dx. The Jacobian occurs when changing variables in an integration: Integral(f(y)dy)=Integral(f(y(x)) |dyT/dx| dx).

Hessian matrix

If f is a function of x then the symmetric matrix d2f/dx2 = d/dxT(df/dx) is the Hessian matrix of f(x). A value of x for which df/dx = 0 corresponds to a minimum, maximum or saddle point according to whether the Hessian is positive definite, negative definite or indefinite.

  • d2/dx2 (aTx) = 0
  • d2/dx2 (Ax+b)TC(Dx+e) = ATCD + DTCTA
  • d2/dx2 (xTCx) = C+CT
  • d2/dx2 (xTx) = 2I
  • d2/dx2 (Ax+b)T (Dx+e) = ATD + DTA
  • d2/dx2 (Ax+b)T (Ax+b) = 2ATA
  • [C: symmetric]: d2/dx2 (Ax+b)TC(Ax+b) = 2ATCA  

http://www.psi.toronto.edu/matrix/calculus.html

http://www.stanford.edu/~dattorro/matrixcalc.pdf

http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf

http://www4.ncsu.edu/~pfackler/MatCalc.pdf

http://center.uvt.nl/staff/magnus/wip12.pdf

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章