win10下安裝GPU版tensorflow及keras的安裝

本人首先安裝的是anaconda。

安裝完anaconda,我們可以修改鏡像源,提升下載速度。這裏使用中科大的:

conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

1,安裝tensorflow-gpu和keras

1.1 創建環境,環境名爲keras(因爲這個tensorflow作爲keras的基礎),並指定python版本

conda create -n keras python=3.6

1.2 激活環境,安裝tensorflow-gpu,順便安裝keras

activate keras
pip install --ignore-installed --upgrade tensorflow-gpu
pip install keras

1.3 如果keras底層不是tensorflow而是其他,在文件目錄框輸入%USERPROFILE%搜索,然後搜索keras.json這個文件,修改backend屬性爲其他值即可。

1.4 驗證keras安裝成功,輸出tensorflow即爲成功。

   import keras
    print(keras.backend.backend())

2,因爲tensorflow-gpu版需要cuda(平臺支持)和cudnn(計算加速)的支持,下面開始繼續安裝:

2.1 檢查電腦顯卡型號能夠支持的最大cuda版本:網址爲顯卡型號對應cuda版本

顯卡型號及內存模式(如ddr Gddr等)可以使用gpu-z軟件查看。比如我是417.22,那麼最高可以下載cuda10.0版本

2.2 cuda下載網址:cuda10.0下載

2.3 cuda安裝,選擇自定義安裝,cuda必要,GeForce Experience可以不要,其他2個看是否新版本大於當前版本,否則也不必要。安裝完成後將cuda的bin目錄加入環境變量中。然後在控制檯輸入nvcc --version驗證安裝成功。

2.4 cudnn下載網址:cudnn下載

cudnn要看cuda的版本,如cuda10.0,那麼cudnn可以是7.5。這裏需要註冊,不過很簡單,下載完成後解壓,將3個文件夾裏的文件拷貝至cuda的同名文件夾下即可。

3 檢查tensorflow-gpu是否可用

在控制檯下輸入,將會顯示顯卡信息。

        import tensorflow as tf
	sess=tf.Session(config=tf.ConfigProto(log_device_placement=True))

4 如果同時安裝了cpu和gpu版tensorflow,默認使用gpu版,切換如下:

with tf.Session() as sess:
    with tf.device("/gpu:0"):#指定gpu或cpu
        dosth...

5 最後,cpu與gpu比較,使用mnist數據集測試

代碼如下:


"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf


tf.logging.set_verbosity(tf.logging.INFO)


def cnn_model_fn(features, labels, mode):
  """Model function for CNN."""
  # Input Layer
  # Reshape X to 4-D tensor: [batch_size, width, height, channels]
  # MNIST images are 28x28 pixels, and have one color channel
  input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])

  # Convolutional Layer #1
  # Computes 32 features using a 5x5 filter with ReLU activation.
  # Padding is added to preserve width and height.
  # Input Tensor Shape: [batch_size, 28, 28, 1]
  # Output Tensor Shape: [batch_size, 28, 28, 32]
  conv1 = tf.layers.conv2d(
      inputs=input_layer,
      filters=32,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu)

  # Pooling Layer #1
  # First max pooling layer with a 2x2 filter and stride of 2
  # Input Tensor Shape: [batch_size, 28, 28, 32]
  # Output Tensor Shape: [batch_size, 14, 14, 32]
  pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)

  # Convolutional Layer #2
  # Computes 64 features using a 5x5 filter.
  # Padding is added to preserve width and height.
  # Input Tensor Shape: [batch_size, 14, 14, 32]
  # Output Tensor Shape: [batch_size, 14, 14, 64]
  conv2 = tf.layers.conv2d(
      inputs=pool1,
      filters=64,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu)

  # Pooling Layer #2
  # Second max pooling layer with a 2x2 filter and stride of 2
  # Input Tensor Shape: [batch_size, 14, 14, 64]
  # Output Tensor Shape: [batch_size, 7, 7, 64]
  pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)

  # Flatten tensor into a batch of vectors
  # Input Tensor Shape: [batch_size, 7, 7, 64]
  # Output Tensor Shape: [batch_size, 7 * 7 * 64]
  pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])

  # Dense Layer
  # Densely connected layer with 1024 neurons
  # Input Tensor Shape: [batch_size, 7 * 7 * 64]
  # Output Tensor Shape: [batch_size, 1024]
  dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)

  # Add dropout operation; 0.6 probability that element will be kept
  dropout = tf.layers.dropout(
      inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)

  # Logits layer
  # Input Tensor Shape: [batch_size, 1024]
  # Output Tensor Shape: [batch_size, 10]
  logits = tf.layers.dense(inputs=dropout, units=10)

  predictions = {
      # Generate predictions (for PREDICT and EVAL mode)
      "classes": tf.argmax(input=logits, axis=1),
      # Add `softmax_tensor` to the graph. It is used for PREDICT and by the
      # `logging_hook`.
      "probabilities": tf.nn.softmax(logits, name="softmax_tensor")
  }
  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate Loss (for both TRAIN and EVAL modes)
  loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

  # Configure the Training Op (for TRAIN mode)
  if mode == tf.estimator.ModeKeys.TRAIN:
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
    train_op = optimizer.minimize(
        loss=loss,
        global_step=tf.train.get_global_step())
    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

  # Add evaluation metrics (for EVAL mode)
  eval_metric_ops = {
      "accuracy": tf.metrics.accuracy(
          labels=labels, predictions=predictions["classes"])}
  return tf.estimator.EstimatorSpec(
      mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)


def main(unused_argv):
  # Load training and eval data
  mnist = tf.contrib.learn.datasets.load_dataset("mnist")
  train_data = mnist.train.images  # Returns np.array
  train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
  eval_data = mnist.test.images  # Returns np.array
  eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)

  # Create the Estimator
  mnist_classifier = tf.estimator.Estimator(
      model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")

  # Set up logging for predictions
  # Log the values in the "Softmax" tensor with label "probabilities"
  tensors_to_log = {"probabilities": "softmax_tensor"}
  logging_hook = tf.train.LoggingTensorHook(
      tensors=tensors_to_log, every_n_iter=50)

  # Train the model
  train_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={"x": train_data},
      y=train_labels,
      batch_size=100,
      num_epochs=None,
      shuffle=True)
  mnist_classifier.train(
      input_fn=train_input_fn,
      steps=20000,
      hooks=[logging_hook])

  # Evaluate the model and print results
  eval_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={"x": eval_data},
      y=eval_labels,
      num_epochs=1,
      shuffle=False)
  eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
  print(eval_results)


if __name__ == "__main__":
	tf.app.run()

使用cpu版時,大概每一批(100個)數據訓練需要17s左右,使用gpu版(且我的筆記本顯卡爲GeForce 940MX,相當low了)時,每一批訓練需要2.5s左右。可見速度還是有不少提升的。

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章