Vulkan填坑學習Day26-1—組合圖像取樣器

Vulkan 組合圖像取樣器

Vulkan 組合圖像取樣器,我們在教程的uniform緩衝區章節中首次瞭解了描述符。在本章節我們會看到一種新的描述符類型:組合圖像取樣器(combined image sampler)。該描述符使着色器通過類似上一章創建的採樣器對象那樣,來訪問圖像資源。

我們將首先修改描述符佈局,描述符對象池和描述符集合,以包括這樣一個組合的圖像採樣器描述符。完成之後,我們會添加紋理貼圖座標到Vertex數據中,並修改片段着色器從紋理中讀取顏色,而不是內插頂點顏色。

一、更新描述符

瀏覽到createDescriptorSetLayout函數,併爲組合圖像採樣器描述符添加一個VkDescriptorSetLayoutBinding。我們將簡單的在uniform緩衝區之後進行綁定操作。

VkDescriptorSetLayoutBinding samplerLayoutBinding = {};
samplerLayoutBinding.binding = 1;
samplerLayoutBinding.descriptorCount = 1;
samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
samplerLayoutBinding.pImmutableSamplers = nullptr;
samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;

std::array<VkDescriptorSetLayoutBinding, 2> bindings = {uboLayoutBinding, samplerLayoutBinding};
VkDescriptorSetLayoutCreateInfo layoutInfo = {};
layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layoutInfo.bindingCount = static_cast<uint32_t>(bindings.size());
layoutInfo.pBindings = bindings.data();

確保stageFlags正確設置,指定我們打算在片段着色器中使用組合圖像採樣器描述符。這就是片段顏色最終被確定的地方。可以在頂點着色器中使用紋理採樣,比如,通過高度圖 heightmap 動態的變形頂點的網格。

如果你開啓validation layers運行程序,你將會看到它引起了描述符對象池不能使用這個佈局分配描述符集合,因爲它沒有任何組合圖像採樣器描述符。
在這裏插入圖片描述
來到createDescriptorPool函數,以包含此描述符的VkDescriptorPoolSize:

std::array<VkDescriptorPoolSize, 2> poolSizes = {};
poolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
poolSizes[0].descriptorCount = 1;
poolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
poolSizes[1].descriptorCount = 1;

VkDescriptorPoolCreateInfo poolInfo = {};
poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
poolInfo.poolSizeCount = static_cast<uint32_t>(poolSizes.size());
poolInfo.pPoolSizes = poolSizes.data();
poolInfo.maxSets = 1;

最後一步是將實際的圖像和採樣器資源綁定到描述符集合中的具體描述符。來到createDescriptorSet函數。

VkDescriptorImageInfo imageInfo = {};
imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageInfo.imageView = textureImageView;
imageInfo.sampler = textureSampler;

組合圖像採樣器結構體的資源必須在VkDescriptorImageInfo結構進行指定。就像在VkDescriptorBufferInfo結構體中指定一個 uniform buffer descriptor 緩衝區資源一樣。這是上一章節中的對象彙集的代碼段。

std::array<VkWriteDescriptorSet, 2> descriptorWrites = {};

descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrites[0].dstSet = descriptorSet;
descriptorWrites[0].dstBinding = 0;
descriptorWrites[0].dstArrayElement = 0;
descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorWrites[0].descriptorCount = 1;
descriptorWrites[0].pBufferInfo = &bufferInfo;

descriptorWrites[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrites[1].dstSet = descriptorSet;
descriptorWrites[1].dstBinding = 1;
descriptorWrites[1].dstArrayElement = 0;
descriptorWrites[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorWrites[1].descriptorCount = 1;
descriptorWrites[1].pImageInfo = &imageInfo;

vkUpdateDescriptorSets(device, static_cast<uint32_t>(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr);

描述符必須與此圖像信息一起更新,就像緩衝區一樣。這次我們使用pImageInfo數組代替pBufferInfo。描述符現在可以被着色器使用!

二、紋理座標

紋理映射的一個重要組成部分仍然缺少,這是每個頂點的實際座標。座標決定如何實際的映射到幾何圖形上。

struct Vertex {
    glm::vec2 pos;
    glm::vec3 color;
    glm::vec2 texCoord;

    static VkVertexInputBindingDescription getBindingDescription() {
        VkVertexInputBindingDescription bindingDescription = {};
        bindingDescription.binding = 0;
        bindingDescription.stride = sizeof(Vertex);
        bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

        return bindingDescription;
    }

    static std::array<VkVertexInputAttributeDescription, 3> getAttributeDescriptions() {
        std::array<VkVertexInputAttributeDescription, 3> attributeDescriptions = {};

        attributeDescriptions[0].binding = 0;
        attributeDescriptions[0].location = 0;
        attributeDescriptions[0].format = VK_FORMAT_R32G32_SFLOAT;
        attributeDescriptions[0].offset = offsetof(Vertex, pos);

        attributeDescriptions[1].binding = 0;
        attributeDescriptions[1].location = 1;
        attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
        attributeDescriptions[1].offset = offsetof(Vertex, color);

        attributeDescriptions[2].binding = 0;
        attributeDescriptions[2].location = 2;
        attributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT;
        attributeDescriptions[2].offset = offsetof(Vertex, texCoord);

        return attributeDescriptions;
    }
};

修改Vertex結構體包含vec2結構用於紋理座標。確保加入VkVertexInputAttributeDescription結構體,如此我們就可以在頂點着色器中訪問紋理UV座標數據。這是必要的,以便能夠將它們傳遞到片段着色器,以便在正方形的表面進行插值處理。

const std::vector<Vertex> vertices = {
    {{-0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f}},
    {{0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f}},
    {{0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}, {0.0f, 1.0f}},
    {{-0.5f, 0.5f}, {1.0f, 1.0f, 1.0f}, {1.0f, 1.0f}}
};

在本教程中,使用座標從左上角 0,0 到右下角的 1,1 來映射紋理,從而簡單的填充矩形。在這裏可以嘗試各種座標。嘗試使用低於 0 或者 1 以上的座標來查看尋址模式的不同表現。

三、着色器

最後一步是修改着色器從紋理中採樣顏色。我們首先需要修改頂點着色器,傳遞紋理座標到片段着色器。

layout(location = 0) in vec2 inPosition;
layout(location = 1) in vec3 inColor;
layout(location = 2) in vec2 inTexCoord;

layout(location = 0) out vec3 fragColor;
layout(location = 1) out vec2 fragTexCoord;

void main() {
    gl_Position = ubo.proj * ubo.view * ubo.model * vec4(inPosition, 0.0, 1.0);
    fragColor = inColor;
    fragTexCoord = inTexCoord;
}

就像每個頂點的顏色,fragTexCoord值通過光柵化平滑的插值到矩形區域內。我們可以通過使片段着色器輸出的紋理座標爲顏色來可視化看到這些:

#version 450
#extension GL_ARB_separate_shader_objects : enable

layout(location = 0) in vec3 fragColor;
layout(location = 1) in vec2 fragTexCoord;

layout(location = 0) out vec4 outColor;

void main() {
    outColor = vec4(fragTexCoord, 0.0, 1.0);
}

現在應該可以看到如下圖所示的效果。不要忘記重新編譯着色器!
在這裏插入圖片描述
使用紋理座標效果
在這裏插入圖片描述
原始效果

綠色通道代表水平座標,紅色通道代表垂直座標。黑色和黃色角確認了紋理座標正確的從 0,0 到 1,1 進行插值填充到方形中。使用顏色可視化在着色器中編程等價於 printf 調試,除此之外沒有更好的方法!

組合圖像採樣器描述符在GLSL中通過採樣器 uniform代替。在片段着色器中引用它:

layout(binding = 1) uniform sampler2D texSampler;

對於其他圖像有等價的 sampler1D 和 sampler3D 類型。確保正確的綁定操作。

void main() {
    outColor = texture(texSampler, fragTexCoord);
}

紋理採用內置的 texture 函數進行採樣。它需要使用 sampler 和 座標作爲參數。採樣器在後臺自動處理過濾和變化功能。你應該可以看到紋理貼圖在方形上:
在這裏插入圖片描述
嘗試修改尋址模式放大大於 1 來觀測效果。比如,下面的片段着色器輸出的結果使用VK_SAMPLER_ADDRESS_MODE_REPEAT:

void main() {
    outColor = texture(texSampler, fragTexCoord * 2.0);
}

在這裏插入圖片描述
還可以使用頂點顏色來處理紋理顏色:

void main() {
    outColor = vec4(fragColor * texture(texSampler, fragTexCoord).rgb, 1.0);
}

將RGB和alha通道分離開,以便不縮放alpha通道。
在這裏插入圖片描述

現在已經知道如何在着色器中訪問圖像!當與幀緩衝區中的圖像進行結合時,這是一個非常有效的技術。你可以看到這些圖像作爲輸入實現很酷的效果,比如 post-processing和3D世界攝像機顯示。

附:

頂點着色器

#version 450
#extension GL_ARB_separate_shader_objects : enable

layout(binding = 0) uniform UniformBufferObject {
    mat4 model;
    mat4 view;
    mat4 proj;
} ubo;

layout(location = 0) in vec2 inPosition;
layout(location = 1) in vec3 inColor;
layout(location = 2) in vec2 inTexCoord;

layout(location = 0) out vec3 fragColor;
layout(location = 1) out vec2 fragTexCoord;

void main() {
    gl_Position = ubo.proj * ubo.view * ubo.model * vec4(inPosition, 0.0, 1.0);
    fragColor = inColor;
    fragTexCoord = inTexCoord;
}

片元着色器

#version 450
#extension GL_ARB_separate_shader_objects : enable

layout(location = 0) in vec3 fragColor;
layout(location = 1) in vec2 fragTexCoord;
layout(binding = 1) uniform sampler2D texSampler;

layout(location = 0) out vec4 outColor;

void main() {
    //outColor = vec4(fragColor, 1.0);
    outColor = vec4(fragTexCoord, 0.0, 1.0);
    //outColor = texture(texSampler, fragTexCoord*2);
    //outColor = vec4(fragColor * texture(texSampler, fragTexCoord).rgb, 1.0);
}

源碼

//26_combined_image_sampler.cpp
#define GLFW_INCLUDE_VULKAN
#define GLM_FORCE_RADIANS
#include <GLFW/glfw3.h>
#include <fstream>
#include <iostream>
#include <stdexcept>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <optional>
#include <set>
#include <array>
#include <algorithm>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <chrono>
#define STB_IMAGE_IMPLEMENTATION
#include <stb/stb_image.h>

const int WIDTH = 800;
const int HEIGHT = 600;
const int MAX_FRAMES_IN_FLIGHT = 2;

const std::vector<const char*> validationLayers = {
	"VK_LAYER_KHRONOS_validation"
};

const std::vector<const char*> deviceExtensions = {
	VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endif

VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
	auto func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
	if (func != nullptr) {
		return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
	}
	else {
		return VK_ERROR_EXTENSION_NOT_PRESENT;
	}
}

void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
	auto func = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
	if (func != nullptr) {
		func(instance, debugMessenger, pAllocator);
	}
}

struct QueueFamilyIndices {
	uint32_t graphicsFamily = -1;
	uint32_t presentFamily = -1;

	bool isComplete() {
		return graphicsFamily >= 0 && presentFamily >= 0;
	}
};

struct SwapChainSupportDetails {
	VkSurfaceCapabilitiesKHR capabilities;
	std::vector<VkSurfaceFormatKHR> formats;
	std::vector<VkPresentModeKHR> presentModes;
};

struct Vertex {
	glm::vec2 pos;
	glm::vec3 color;
	glm::vec2 texCoord;

	//綁定描述
	static VkVertexInputBindingDescription getBindingDescription() {
		VkVertexInputBindingDescription bindingDescription = {};
		bindingDescription.binding = 0;
		bindingDescription.stride = sizeof(Vertex);
		bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

		return bindingDescription;
	}

	//屬性描述
	static std::array<VkVertexInputAttributeDescription, 3> getAttributeDescriptions() {
		std::array<VkVertexInputAttributeDescription, 3> attributeDescriptions = {};

		attributeDescriptions[0].binding = 0;
		attributeDescriptions[0].location = 0;
		attributeDescriptions[0].format = VK_FORMAT_R32G32_SFLOAT;
		attributeDescriptions[0].offset = offsetof(Vertex, pos);

		attributeDescriptions[1].binding = 0;
		attributeDescriptions[1].location = 1;
		attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
		attributeDescriptions[1].offset = offsetof(Vertex, color);

		attributeDescriptions[2].binding = 0;
		attributeDescriptions[2].location = 2;
		attributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT;
		attributeDescriptions[2].offset = offsetof(Vertex, texCoord);

		return attributeDescriptions;
	}
};

struct UniformBufferObject {
	glm::mat4 model;
	glm::mat4 view;
	glm::mat4 proj;
};

const std::vector<Vertex> vertices = {
	{{-0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f}},
	{{0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f}},
	{{0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}, {0.0f, 1.0f}},
	{{-0.5f, 0.5f}, {1.0f, 1.0f, 1.0f}, {1.0f, 1.0f}}
};

const std::vector<uint16_t> indices = {
	0, 1, 2, 2, 3, 0
};

class HelloTriangleApplication {
public:
	void run() {
		initWindow();
		initVulkan();
		mainLoop();
		cleanup();
	}

private:
	GLFWwindow* window;

	VkInstance instance;
	VkDebugUtilsMessengerEXT debugMessenger;
	VkSurfaceKHR surface;

	VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
	VkDevice device;

	VkQueue graphicsQueue;
	VkQueue presentQueue;

	VkSwapchainKHR swapChain;
	std::vector<VkImage> swapChainImages;
	VkFormat swapChainImageFormat;
	VkExtent2D swapChainExtent;

	std::vector<VkImageView> swapChainImageViews;

	VkRenderPass renderPass;
	VkDescriptorSetLayout descriptorSetLayout;
	VkPipelineLayout pipelineLayout;
	VkPipeline graphicsPipeline;
	std::vector<VkFramebuffer> swapChainFramebuffers;

	VkCommandPool commandPool;
	std::vector<VkCommandBuffer> commandBuffers;

	VkSemaphore imageAvailableSemaphore;
	VkSemaphore renderFinishedSemaphore;

	std::vector<VkSemaphore> imageAvailableSemaphores;
	std::vector<VkSemaphore> renderFinishedSemaphores;
	std::vector<VkFence> inFlightFences;
	std::vector<VkFence> imagesInFlight;
	size_t currentFrame = 0;

	VkImage textureImage;
	VkDeviceMemory textureImageMemory;
	VkImageView textureImageView;//保存紋理圖像
	VkSampler textureSampler;//創建採樣器

	VkBuffer vertexBuffer;
	VkDeviceMemory vertexBufferMemory;
	VkBuffer indexBuffer;
	VkDeviceMemory indexBufferMemory;
	VkBuffer uniformBuffer;
	VkDeviceMemory uniformBufferMemory;

	VkDescriptorPool descriptorPool;
	VkDescriptorSet descriptorSet;

	VkBuffer stagingBuffer;
	VkDeviceMemory stagingBufferMemory;

	void initWindow() {
		glfwInit();

		glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
		//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);

		window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan_Day26_combined_image_sampler", nullptr, nullptr);

		glfwSetWindowUserPointer(window, this);
		glfwSetWindowSizeCallback(window, HelloTriangleApplication::onWindowResized);
	}

	void initVulkan() {
		createInstance();
		setupDebugMessenger();
		createSurface();
		pickPhysicalDevice();
		createLogicalDevice();
		createSwapChain();
		createImageViews();
		createRenderPass();
		createDescriptorSetLayout();
		createGraphicsPipeline();
		createFramebuffers();
		createCommandPool();
		createTextureImage();
		createTextureImageView();
		createTextureSampler();
		createVertexBuffer();
		createIndexBuffer();
		createUniformBuffer();
		createDescriptorPool();
		createDescriptorSet();
		createCommandBuffers();
		createSemaphores();
	}

	void mainLoop() {
		while (!glfwWindowShouldClose(window)) {
			glfwPollEvents();
			updateUniformBuffer();
			drawFrame();
		}

		vkDeviceWaitIdle(device);
	}

	void cleanup() {
		cleanupSwapChain();
		vkDestroySampler(device, textureSampler, nullptr);
		vkDestroyImageView(device, textureImageView, nullptr);
		vkDestroyImage(device, textureImage, nullptr);
		vkFreeMemory(device, textureImageMemory, nullptr);
		vkDestroyDescriptorPool(device, descriptorPool, nullptr);
		vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
		vkDestroyBuffer(device, uniformBuffer, nullptr);
		vkFreeMemory(device, uniformBufferMemory, nullptr);
		vkDestroyBuffer(device, indexBuffer, nullptr);
		vkFreeMemory(device, indexBufferMemory, nullptr);
		vkDestroyBuffer(device, vertexBuffer, nullptr);
		vkFreeMemory(device, vertexBufferMemory, nullptr);

		for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
			vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr);
			vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr);
			vkDestroyFence(device, inFlightFences[i], nullptr);
		}

		vkDestroyCommandPool(device, commandPool, nullptr);

		vkDestroyDevice(device, nullptr);

		if (enableValidationLayers) {
			DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
		}

		vkDestroySurfaceKHR(instance, surface, nullptr);
		vkDestroyInstance(instance, nullptr);

		glfwDestroyWindow(window);

		glfwTerminate();
	}

	void updateUniformBuffer() {
		static auto startTime = std::chrono::high_resolution_clock::now();
		auto currentTime = std::chrono::high_resolution_clock::now();
		float time = std::chrono::duration_cast<std::chrono::milliseconds>(currentTime - startTime).count() / 1000.0f;

		UniformBufferObject ubo = {};
		ubo.model = glm::rotate(glm::mat4(1.0f), time * glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f));

		ubo.view = glm::lookAt(glm::vec3(2.0f, 2.0f, 2.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f));

		ubo.proj = glm::perspective(glm::radians(45.0f), swapChainExtent.width / (float)swapChainExtent.height, 0.1f, 10.0f);

		ubo.proj[1][1] *= -1;

		void* data;
		vkMapMemory(device, uniformBufferMemory, 0, sizeof(ubo), 0, &data);
		memcpy(data, &ubo, sizeof(ubo));
		vkUnmapMemory(device, uniformBufferMemory);
	}

	void drawFrame() {
		vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX);

		uint32_t imageIndex;
		VkResult result = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);

		if (result == VK_ERROR_OUT_OF_DATE_KHR) {
			recreateSwapChain();
			return;
		}
		else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
			throw std::runtime_error("failed to acquire swap chain image!");
		}

		if (imagesInFlight[imageIndex] != VK_NULL_HANDLE) {
			vkWaitForFences(device, 1, &imagesInFlight[imageIndex], VK_TRUE, UINT64_MAX);
		}
		imagesInFlight[imageIndex] = inFlightFences[currentFrame];

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

		VkSemaphore waitSemaphores[] = { imageAvailableSemaphores[currentFrame] };
		VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
		submitInfo.waitSemaphoreCount = 1;
		submitInfo.pWaitSemaphores = waitSemaphores;
		submitInfo.pWaitDstStageMask = waitStages;

		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffers[imageIndex];

		VkSemaphore signalSemaphores[] = { renderFinishedSemaphores[currentFrame] };
		submitInfo.signalSemaphoreCount = 1;
		submitInfo.pSignalSemaphores = signalSemaphores;

		vkResetFences(device, 1, &inFlightFences[currentFrame]);

		if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]) != VK_SUCCESS) {
			throw std::runtime_error("failed to submit draw command buffer!");
		}

		VkPresentInfoKHR presentInfo = {};
		presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;

		presentInfo.waitSemaphoreCount = 1;
		presentInfo.pWaitSemaphores = signalSemaphores;

		VkSwapchainKHR swapChains[] = { swapChain };
		presentInfo.swapchainCount = 1;
		presentInfo.pSwapchains = swapChains;

		presentInfo.pImageIndices = &imageIndex;

		result = vkQueuePresentKHR(presentQueue, &presentInfo);

		if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
			recreateSwapChain();
		}
		else if (result != VK_SUCCESS) {
			throw std::runtime_error("failed to present swap chain image!");
		}

		currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
	}

	static void onWindowResized(GLFWwindow* window, int width, int height) {
		if (width == 0 || height == 0) return;

		HelloTriangleApplication* app = reinterpret_cast<HelloTriangleApplication*>(glfwGetWindowUserPointer(window));
		app->recreateSwapChain();
	}

	void cleanupSwapChain() {
		for (auto framebuffer : swapChainFramebuffers) {
			vkDestroyFramebuffer(device, framebuffer, nullptr);
		}

		vkFreeCommandBuffers(device, commandPool, static_cast<uint32_t>(commandBuffers.size()), commandBuffers.data());

		vkDestroyPipeline(device, graphicsPipeline, nullptr);
		vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
		vkDestroyRenderPass(device, renderPass, nullptr);

		for (auto imageView : swapChainImageViews) {
			vkDestroyImageView(device, imageView, nullptr);
		}

		vkDestroySwapchainKHR(device, swapChain, nullptr);
	}

	void recreateSwapChain() {
		int width = 0, height = 0;
		glfwGetFramebufferSize(window, &width, &height);
		while (width == 0 || height == 0) {
			glfwGetFramebufferSize(window, &width, &height);
			glfwWaitEvents();
		}

		vkDeviceWaitIdle(device);

		cleanupSwapChain();

		createSwapChain();
		createImageViews();
		createRenderPass();
		createGraphicsPipeline();
		createFramebuffers();
		createCommandBuffers();
	}

	void createInstance() {
		if (enableValidationLayers && !checkValidationLayerSupport()) {
			throw std::runtime_error("validation layers requested, but not available!");
		}

		VkApplicationInfo appInfo = {};
		appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
		appInfo.pApplicationName = "Hello Triangle";
		appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
		appInfo.pEngineName = "No Engine";
		appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
		appInfo.apiVersion = VK_API_VERSION_1_0;

		VkInstanceCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
		createInfo.pApplicationInfo = &appInfo;

		auto extensions = getRequiredExtensions();
		createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
		createInfo.ppEnabledExtensionNames = extensions.data();

		VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo;
		if (enableValidationLayers) {
			createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
			createInfo.ppEnabledLayerNames = validationLayers.data();

			populateDebugMessengerCreateInfo(debugCreateInfo);
			createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*)&debugCreateInfo;
		}
		else {
			createInfo.enabledLayerCount = 0;

			createInfo.pNext = nullptr;
		}

		if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
			throw std::runtime_error("failed to create instance!");
		}
	}

	void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
		createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
		createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
		createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
		createInfo.pfnUserCallback = debugCallback;
	}

	void setupDebugMessenger() {
		if (!enableValidationLayers) return;

		VkDebugUtilsMessengerCreateInfoEXT createInfo;
		populateDebugMessengerCreateInfo(createInfo);

		if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
			throw std::runtime_error("failed to set up debug messenger!");
		}
	}

	void createImageViews() {
		swapChainImageViews.resize(swapChainImages.size());
		for (size_t i = 0; i < swapChainImages.size(); i++) {
			swapChainImageViews[i] = createImageView(swapChainImages[i], swapChainImageFormat);
		}
	}

	VkImageView createImageView(VkImage image, VkFormat format) {
		VkImageViewCreateInfo viewInfo = {};
		viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
		viewInfo.image = image;
		viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
		viewInfo.format = format;
		viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
		viewInfo.subresourceRange.baseMipLevel = 0;
		viewInfo.subresourceRange.levelCount = 1;
		viewInfo.subresourceRange.baseArrayLayer = 0;
		viewInfo.subresourceRange.layerCount = 1;

		VkImageView imageView;
		if (vkCreateImageView(device, &viewInfo, nullptr, &imageView) != VK_SUCCESS) {
			throw std::runtime_error("failed to create texture image view!");
		}

		return imageView;
	}

	void createSurface() {
		if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) {
			throw std::runtime_error("failed to create window surface!");
		}
	}

	void pickPhysicalDevice() {
		uint32_t deviceCount = 0;
		vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

		if (deviceCount == 0) {
			throw std::runtime_error("failed to find GPUs with Vulkan support!");
		}

		std::vector<VkPhysicalDevice> devices(deviceCount);
		vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());

		for (const auto& device : devices) {
			if (isDeviceSuitable(device)) {
				physicalDevice = device;
				break;
			}
		}

		if (physicalDevice == VK_NULL_HANDLE) {
			throw std::runtime_error("failed to find a suitable GPU!");
		}
	}

	void createLogicalDevice() {
		QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
		std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
		std::set<uint32_t> uniqueQueueFamilies = { indices.graphicsFamily, indices.presentFamily };
		float queuePriority = 1.0f;
		for (int queueFamily : uniqueQueueFamilies) {
			VkDeviceQueueCreateInfo queueCreateInfo = {};
			queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
			queueCreateInfo.queueFamilyIndex = queueFamily;
			queueCreateInfo.queueCount = 1;
			queueCreateInfo.pQueuePriorities = &queuePriority;
			queueCreateInfos.push_back(queueCreateInfo);
		}

		VkPhysicalDeviceFeatures deviceFeatures = {};
		deviceFeatures.samplerAnisotropy = VK_TRUE;

		VkDeviceCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

		createInfo.pQueueCreateInfos = queueCreateInfos.data();
		createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());

		createInfo.pEnabledFeatures = &deviceFeatures;

		createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
		createInfo.ppEnabledExtensionNames = deviceExtensions.data();

		if (enableValidationLayers) {
			createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
			createInfo.ppEnabledLayerNames = validationLayers.data();
		}
		else {
			createInfo.enabledLayerCount = 0;
		}

		if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
			throw std::runtime_error("failed to create logical device!");
		}

		vkGetDeviceQueue(device, indices.graphicsFamily, 0, &graphicsQueue);
		vkGetDeviceQueue(device, indices.presentFamily, 0, &presentQueue);
	}

	void createSwapChain() {
		SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);

		VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
		VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
		VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);

		uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
		if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
			imageCount = swapChainSupport.capabilities.maxImageCount;
		}

		VkSwapchainCreateInfoKHR createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
		createInfo.surface = surface;

		createInfo.minImageCount = imageCount;
		createInfo.imageFormat = surfaceFormat.format;
		createInfo.imageColorSpace = surfaceFormat.colorSpace;
		createInfo.imageExtent = extent;
		createInfo.imageArrayLayers = 1;
		createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

		QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
		uint32_t queueFamilyIndices[] = { (uint32_t)indices.graphicsFamily, (uint32_t)indices.presentFamily };

		if (indices.graphicsFamily != indices.presentFamily) {
			createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
			createInfo.queueFamilyIndexCount = 2;
			createInfo.pQueueFamilyIndices = queueFamilyIndices;
		}
		else {
			createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
			createInfo.queueFamilyIndexCount = 0; // Optional
			createInfo.pQueueFamilyIndices = nullptr; // Optional
		}

		createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
		createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
		createInfo.presentMode = presentMode;
		createInfo.clipped = VK_TRUE;
		createInfo.oldSwapchain = VK_NULL_HANDLE;

		if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
			throw std::runtime_error("failed to create swap chain!");
		}

		vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
		swapChainImages.resize(imageCount);
		vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());
		swapChainImageFormat = surfaceFormat.format;
		swapChainExtent = extent;
	}

	bool isDeviceSuitable(VkPhysicalDevice device) {
		QueueFamilyIndices indices = findQueueFamilies(device);
		bool extensionsSupported = checkDeviceExtensionSupport(device);

		bool swapChainAdequate = false;
		if (extensionsSupported) {
			SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
			swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
		}
		//各向異性濾波器
		VkPhysicalDeviceFeatures supportedFeatures;
		vkGetPhysicalDeviceFeatures(device, &supportedFeatures);
		return indices.isComplete() && extensionsSupported && swapChainAdequate&& supportedFeatures.samplerAnisotropy;
	}

	void createRenderPass() {
		VkAttachmentDescription colorAttachment = {};
		colorAttachment.format = swapChainImageFormat;
		colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
		colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
		colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
		colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
		colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
		colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
		colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

		VkAttachmentReference colorAttachmentRef = {};
		colorAttachmentRef.attachment = 0;
		colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

		VkSubpassDescription subpass = {};
		subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;

		subpass.colorAttachmentCount = 1;
		subpass.pColorAttachments = &colorAttachmentRef;

		VkRenderPassCreateInfo renderPassInfo = {};
		renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
		renderPassInfo.attachmentCount = 1;
		renderPassInfo.pAttachments = &colorAttachment;
		renderPassInfo.subpassCount = 1;
		renderPassInfo.pSubpasses = &subpass;
		VkSubpassDependency dependency = {};
		dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
		dependency.dstSubpass = 0;
		dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
		dependency.srcAccessMask = 0;
		dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
		dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
		renderPassInfo.dependencyCount = 1;
		renderPassInfo.pDependencies = &dependency;

		if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
			throw std::runtime_error("failed to create render pass!");
		}
	}

	VkShaderModule createShaderModule(const std::vector<char>& code) {
		VkShaderModuleCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
		createInfo.codeSize = code.size();

		createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());

		VkShaderModule shaderModule;
		if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
			throw std::runtime_error("failed to create shader module!");
		}
		return shaderModule;
	}

	static std::vector<char> readFile(const std::string& filename) {
		std::ifstream file(filename, std::ios::ate | std::ios::binary);

		if (!file.is_open()) {
			throw std::runtime_error("failed to open file!");
		}
		size_t fileSize = (size_t)file.tellg();
		std::vector<char> buffer(fileSize);
		file.seekg(0);
		file.read(buffer.data(), fileSize);
		file.close();
		return buffer;
	}

	void createSemaphores() {
		imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
		renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
		inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);
		imagesInFlight.resize(swapChainImages.size(), VK_NULL_HANDLE);

		VkSemaphoreCreateInfo semaphoreInfo = {};
		semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;

		VkFenceCreateInfo fenceInfo = {};
		fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
		fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;

		for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
			if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS ||
				vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS ||
				vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create synchronization objects for a frame!");
			}
		}
	}

	void createCommandBuffers() {
		commandBuffers.resize(swapChainFramebuffers.size());
		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.commandPool = commandPool;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandBufferCount = (uint32_t)commandBuffers.size();

		if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate command buffers!");
		}

		for (size_t i = 0; i < commandBuffers.size(); i++) {
			VkCommandBufferBeginInfo beginInfo = {};
			beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
			beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
			beginInfo.pInheritanceInfo = nullptr; // Optional

			vkBeginCommandBuffer(commandBuffers[i], &beginInfo);

			VkRenderPassBeginInfo renderPassInfo = {};
			renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
			renderPassInfo.renderPass = renderPass;
			renderPassInfo.framebuffer = swapChainFramebuffers[i];

			renderPassInfo.renderArea.offset = { 0, 0 };
			renderPassInfo.renderArea.extent = swapChainExtent;

			VkClearValue clearColor = { 0.1f, 0.1f, 0.3f, 0.6f };
			renderPassInfo.clearValueCount = 1;
			renderPassInfo.pClearValues = &clearColor;
			vkCmdBeginRenderPass(commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);

			//渲染期間綁定緩衝區
			vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

			VkBuffer vertexBuffers[] = { vertexBuffer };
			VkDeviceSize offsets[] = { 0 };
			//綁定頂點緩衝區
			vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets);

			vkCmdBindIndexBuffer(commandBuffers[i], indexBuffer, 0, VK_INDEX_TYPE_UINT16);

			vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);

			vkCmdDrawIndexed(commandBuffers[i], static_cast<uint32_t>(indices.size()), 1, 0, 0, 0);

			//vkCmdDraw(commandBuffers[i], static_cast<uint32_t>(vertices.size()), 1, 0, 0);

			vkCmdEndRenderPass(commandBuffers[i]);

			if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to record command buffer!");
			}
		}

	}

	void createCommandPool() {
		QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);

		VkCommandPoolCreateInfo poolInfo = {};
		poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
		poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily;
		poolInfo.flags = 0; // Optional

		if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
			throw std::runtime_error("failed to create command pool!");
		}
	}

	void createTextureSampler() {
		VkSamplerCreateInfo samplerInfo = {};
		samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
		//指定紋素放大和縮小內插值方式
		samplerInfo.magFilter = VK_FILTER_LINEAR;
		samplerInfo.minFilter = VK_FILTER_LINEAR;
		//每個軸向使用的尋址模式
		samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
		samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
		samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
		//各向異性過濾器
		samplerInfo.anisotropyEnable = VK_TRUE;
		samplerInfo.maxAnisotropy = 16;
		//samplerInfo.anisotropyEnable = VK_FALSE;
		//samplerInfo.maxAnisotropy = 1;
		//採樣範圍超過圖像時候返回的顏色
		samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
		//指定使用的座標系統,用於訪問圖像的紋素
		samplerInfo.unnormalizedCoordinates = VK_FALSE;
		//開啓比較功能,那麼紋素首先和值進行比較,並且比較後的值用於過濾操作
		samplerInfo.compareEnable = VK_FALSE;
		samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
		samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
		samplerInfo.mipLodBias = 0.0f;
		samplerInfo.minLod = 0.0f;
		samplerInfo.maxLod = 0.0f;

		//創建採樣器
		if (vkCreateSampler(device, &samplerInfo, nullptr, &textureSampler) != VK_SUCCESS) {
			throw std::runtime_error("failed to create texture sampler!");
		}
	}

	void createTextureImageView() {
		textureImageView = createImageView(textureImage, VK_FORMAT_R8G8B8A8_UNORM);
	}

	void createTextureImage() {
		int texWidth, texHeight, texChannels;
		stbi_uc* pixels = stbi_load("texture.jpg", &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
		VkDeviceSize imageSize = texWidth * texHeight * 4;

		if (!pixels) {
			throw std::runtime_error("failed to load texture image!");
		}

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;
		createBuffer(imageSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		void* data;
		vkMapMemory(device, stagingBufferMemory, 0, imageSize, 0, &data);
		memcpy(data, pixels, static_cast<size_t>(imageSize));
		vkUnmapMemory(device, stagingBufferMemory);

		stbi_image_free(pixels);

		createImage(texWidth, texHeight, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, textureImage, textureImageMemory);

		transitionImageLayout(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
		copyBufferToImage(stagingBuffer, textureImage, static_cast<uint32_t>(texWidth), static_cast<uint32_t>(texHeight));
		transitionImageLayout(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}

	void createImage(uint32_t width, uint32_t height, VkFormat format, VkImageTiling tiling, VkImageUsageFlags usage, VkMemoryPropertyFlags properties, VkImage& image, VkDeviceMemory& imageMemory) {
		VkImageCreateInfo imageInfo = {};
		imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
		imageInfo.imageType = VK_IMAGE_TYPE_2D;
		imageInfo.extent.width = width;
		imageInfo.extent.height = height;
		imageInfo.extent.depth = 1;
		imageInfo.mipLevels = 1;
		imageInfo.arrayLayers = 1;
		imageInfo.format = format;
		imageInfo.tiling = tiling;
		imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
		imageInfo.usage = usage;
		imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
		imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

		if (vkCreateImage(device, &imageInfo, nullptr, &image) != VK_SUCCESS) {
			throw std::runtime_error("failed to create image!");
		}

		VkMemoryRequirements memRequirements;
		vkGetImageMemoryRequirements(device, image, &memRequirements);

		VkMemoryAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
		allocInfo.allocationSize = memRequirements.size;
		allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);

		if (vkAllocateMemory(device, &allocInfo, nullptr, &imageMemory) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate image memory!");
		}

		vkBindImageMemory(device, image, imageMemory, 0);
	}

	void transitionImageLayout(VkImage image, VkFormat format, VkImageLayout oldLayout, VkImageLayout newLayout) {
		VkCommandBuffer commandBuffer = beginSingleTimeCommands();

		VkImageMemoryBarrier barrier = {};
		barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
		barrier.oldLayout = oldLayout;
		barrier.newLayout = newLayout;
		barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
		barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
		barrier.image = image;
		barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
		barrier.subresourceRange.baseMipLevel = 0;
		barrier.subresourceRange.levelCount = 1;
		barrier.subresourceRange.baseArrayLayer = 0;
		barrier.subresourceRange.layerCount = 1;

		VkPipelineStageFlags sourceStage;
		VkPipelineStageFlags destinationStage;

		if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
			barrier.srcAccessMask = 0;
			barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;

			sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
			destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
		}
		else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
			barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
			barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;

			sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
			destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
		}
		else {
			throw std::invalid_argument("unsupported layout transition!");
		}

		vkCmdPipelineBarrier(
			commandBuffer,
			sourceStage, destinationStage,
			0,
			0, nullptr,
			0, nullptr,
			1, &barrier
		);

		endSingleTimeCommands(commandBuffer);
	}

	void copyBufferToImage(VkBuffer buffer, VkImage image, uint32_t width, uint32_t height) {
		VkCommandBuffer commandBuffer = beginSingleTimeCommands();

		VkBufferImageCopy region = {};
		region.bufferOffset = 0;
		region.bufferRowLength = 0;
		region.bufferImageHeight = 0;
		region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
		region.imageSubresource.mipLevel = 0;
		region.imageSubresource.baseArrayLayer = 0;
		region.imageSubresource.layerCount = 1;
		region.imageOffset = { 0, 0, 0 };
		region.imageExtent = {
			width,
			height,
			1
		};

		vkCmdCopyBufferToImage(commandBuffer, buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);

		endSingleTimeCommands(commandBuffer);
	}

	// 創建頂點緩衝區
	void createVertexBuffer() {

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;

		VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		//*****填充頂點緩衝區*****
		void* data;
		//將緩衝區內存映射(mapping the buffer memory)到CPU可訪問的內存中完成
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
		//將頂點數據拷貝到映射內存中
		memcpy(data, vertices.data(), (size_t)bufferSize);
		//取消映射
		vkUnmapMemory(device, stagingBufferMemory);

		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory);

		copyBuffer(stagingBuffer, vertexBuffer, bufferSize);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}

	// 創建索引緩衝區
	void createIndexBuffer() {
		VkDeviceSize bufferSize = sizeof(indices[0]) * indices.size();

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		void* data;
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
		memcpy(data, indices.data(), (size_t)bufferSize);
		vkUnmapMemory(device, stagingBufferMemory);

		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory);

		copyBuffer(stagingBuffer, indexBuffer, bufferSize);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}

	void createUniformBuffer() {
		VkDeviceSize bufferSize = sizeof(UniformBufferObject);
		createBuffer(bufferSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, uniformBuffer, uniformBufferMemory);
	}

	void createDescriptorPool() {
		//組合圖像採樣器描述符
		std::array<VkDescriptorPoolSize, 2> poolSizes = {};
		poolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		poolSizes[0].descriptorCount = 1;
		poolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
		poolSizes[1].descriptorCount = 1;

		VkDescriptorPoolCreateInfo poolInfo = {};
		poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
		poolInfo.poolSizeCount = static_cast<uint32_t>(poolSizes.size());
		poolInfo.pPoolSizes = poolSizes.data();
		poolInfo.maxSets = 1;

		if (vkCreateDescriptorPool(device, &poolInfo, nullptr, &descriptorPool) != VK_SUCCESS) {
			throw std::runtime_error("failed to create descriptor pool!");
		}
	}

	void createDescriptorSet() {
		VkDescriptorSetLayout layouts[] = { descriptorSetLayout };
		VkDescriptorSetAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
		allocInfo.descriptorPool = descriptorPool;
		allocInfo.descriptorSetCount = 1;
		allocInfo.pSetLayouts = layouts;
		if (vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate descriptor set!");
		}

		VkDescriptorBufferInfo bufferInfo = {};
		bufferInfo.buffer = uniformBuffer;
		bufferInfo.offset = 0;
		bufferInfo.range = sizeof(UniformBufferObject);

		VkDescriptorImageInfo imageInfo = {};
		imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
		imageInfo.imageView = textureImageView;
		imageInfo.sampler = textureSampler;
		std::array<VkWriteDescriptorSet, 2> descriptorWrites = {};

		descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
		descriptorWrites[0].dstSet = descriptorSet;
		descriptorWrites[0].dstBinding = 0;
		descriptorWrites[0].dstArrayElement = 0;
		descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		descriptorWrites[0].descriptorCount = 1;
		descriptorWrites[0].pBufferInfo = &bufferInfo;

		descriptorWrites[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
		descriptorWrites[1].dstSet = descriptorSet;
		descriptorWrites[1].dstBinding = 1;
		descriptorWrites[1].dstArrayElement = 0;
		descriptorWrites[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
		descriptorWrites[1].descriptorCount = 1;
		descriptorWrites[1].pImageInfo = &imageInfo;

		vkUpdateDescriptorSets(device, static_cast<uint32_t>(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr);

	}

	//創建緩衝區
	void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer& buffer, VkDeviceMemory& bufferMemory) {

		//創建緩衝區
		VkBufferCreateInfo bufferInfo = {};
		bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
		bufferInfo.size = size;
		bufferInfo.usage = usage;
		bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
		if (vkCreateBuffer(device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
			throw std::runtime_error("failed to create buffer!");
		}

		//內存需求
		VkMemoryRequirements memRequirements;
		vkGetBufferMemoryRequirements(device, buffer, &memRequirements);

		//內存分配
		VkMemoryAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
		allocInfo.allocationSize = memRequirements.size;
		allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);

		if (vkAllocateMemory(device, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate buffer memory!");
		}
		//將內存關聯到緩衝區
		vkBindBufferMemory(device, buffer, bufferMemory, 0);
	}

	//用於從一個緩衝區拷貝數據到另一個緩衝區
	void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {
		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandPool = commandPool;
		allocInfo.commandBufferCount = 1;

		VkCommandBuffer commandBuffer;
		vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);

		VkCommandBufferBeginInfo beginInfo = {};
		beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
		beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;

		vkBeginCommandBuffer(commandBuffer, &beginInfo);

		VkBufferCopy copyRegion = {};
		copyRegion.size = size;
		vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, &copyRegion);

		vkEndCommandBuffer(commandBuffer);

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffer;

		vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
		vkQueueWaitIdle(graphicsQueue);

		vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);
	}

	VkCommandBuffer beginSingleTimeCommands() {
		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandPool = commandPool;
		allocInfo.commandBufferCount = 1;

		VkCommandBuffer commandBuffer;
		vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);

		VkCommandBufferBeginInfo beginInfo = {};
		beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
		beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;

		vkBeginCommandBuffer(commandBuffer, &beginInfo);

		return commandBuffer;
	}

	void endSingleTimeCommands(VkCommandBuffer commandBuffer) {
		vkEndCommandBuffer(commandBuffer);

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffer;

		vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
		vkQueueWaitIdle(graphicsQueue);

		vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);
	}

	uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
		VkPhysicalDeviceMemoryProperties memProperties;
		vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);

		for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
			if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
				return i;
			}
		}

		throw std::runtime_error("failed to find suitable memory type!");
	}

	void createFramebuffers() {
		swapChainFramebuffers.resize(swapChainImageViews.size());
		for (size_t i = 0; i < swapChainImageViews.size(); i++) {
			VkImageView attachments[] = {
				swapChainImageViews[i]
			};

			VkFramebufferCreateInfo framebufferInfo = {};
			framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
			framebufferInfo.renderPass = renderPass;
			framebufferInfo.attachmentCount = 1;
			framebufferInfo.pAttachments = attachments;
			framebufferInfo.width = swapChainExtent.width;
			framebufferInfo.height = swapChainExtent.height;
			framebufferInfo.layers = 1;

			if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create framebuffer!");
			}
		}
	}

	void createDescriptorSetLayout() {
		VkDescriptorSetLayoutBinding uboLayoutBinding = {};
		uboLayoutBinding.binding = 0;
		uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		uboLayoutBinding.descriptorCount = 1;
		uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
		uboLayoutBinding.pImmutableSamplers = nullptr; // Optional

		//爲組合圖像採樣器描述符添加一個VkDescriptorSetLayoutBinding
		VkDescriptorSetLayoutBinding samplerLayoutBinding = {};
		samplerLayoutBinding.binding = 1;
		samplerLayoutBinding.descriptorCount = 1;
		samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
		samplerLayoutBinding.pImmutableSamplers = nullptr;
		//確保stageFlags正確設置,指定我們打算在片段着色器中使用組合圖像採樣器描述符。這就是片段顏色最終被確定的地方。可以在頂點着色器中使用紋理採樣
		samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;

		std::array<VkDescriptorSetLayoutBinding, 2> bindings = { uboLayoutBinding, samplerLayoutBinding };
		VkDescriptorSetLayoutCreateInfo layoutInfo = {};
		layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
		layoutInfo.bindingCount = static_cast<uint32_t>(bindings.size());
		layoutInfo.pBindings = bindings.data();


		if (vkCreateDescriptorSetLayout(device, &layoutInfo, nullptr, &descriptorSetLayout) != VK_SUCCESS) {
			throw std::runtime_error("failed to create descriptor set layout!");
		}
	}

	void createGraphicsPipeline() {
		auto vertShaderCode = readFile("shader.vert.spv");
		auto fragShaderCode = readFile("shader.frag.spv");

		VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
		VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);

		VkPipelineShaderStageCreateInfo vertShaderStageInfo = {};
		vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
		vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
		vertShaderStageInfo.module = vertShaderModule;
		vertShaderStageInfo.pName = "main";

		VkPipelineShaderStageCreateInfo fragShaderStageInfo = {};
		fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
		fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
		fragShaderStageInfo.module = fragShaderModule;
		fragShaderStageInfo.pName = "main";

		VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, fragShaderStageInfo };

		VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
		vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;

		//配置圖形管線可以接受重新定義的頂點數據的格式
		auto bindingDescription = Vertex::getBindingDescription();
		auto attributeDescriptions = Vertex::getAttributeDescriptions();

		vertexInputInfo.vertexBindingDescriptionCount = 1;
		vertexInputInfo.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
		vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
		vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();

		VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};
		inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
		inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
		inputAssembly.primitiveRestartEnable = VK_FALSE;

		VkViewport viewport = {};
		viewport.x = 0.0f;
		viewport.y = 0.0f;
		viewport.width = (float)swapChainExtent.width;
		viewport.height = (float)swapChainExtent.height;
		viewport.minDepth = 0.0f;
		viewport.maxDepth = 1.0f;

		VkRect2D scissor = {};
		scissor.offset = { 0, 0 };
		scissor.extent = swapChainExtent;

		VkPipelineViewportStateCreateInfo viewportState = {};
		viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
		viewportState.viewportCount = 1;
		viewportState.pViewports = &viewport;
		viewportState.scissorCount = 1;
		viewportState.pScissors = &scissor;

		VkPipelineRasterizationStateCreateInfo rasterizer = {};
		rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
		rasterizer.depthClampEnable = VK_FALSE;
		rasterizer.rasterizerDiscardEnable = VK_FALSE;
		rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
		rasterizer.lineWidth = 1.0f;
		rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
		rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
		rasterizer.depthBiasEnable = VK_FALSE;

		VkPipelineMultisampleStateCreateInfo multisampling = {};
		multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
		multisampling.sampleShadingEnable = VK_FALSE;
		multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
		multisampling.minSampleShading = 1.0f; // Optional
		multisampling.pSampleMask = nullptr; // Optional
		multisampling.alphaToCoverageEnable = VK_FALSE; // Optional
		multisampling.alphaToOneEnable = VK_FALSE; // Optional

		VkPipelineColorBlendAttachmentState colorBlendAttachment = {};
		colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
		colorBlendAttachment.blendEnable = VK_FALSE;
		colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
		colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
		colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional
		colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
		colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
		colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional

		VkPipelineColorBlendStateCreateInfo colorBlending = {};
		colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
		colorBlending.logicOpEnable = VK_FALSE;
		colorBlending.logicOp = VK_LOGIC_OP_COPY;
		colorBlending.attachmentCount = 1;
		colorBlending.pAttachments = &colorBlendAttachment;
		colorBlending.blendConstants[0] = 0.0f;
		colorBlending.blendConstants[1] = 0.0f;
		colorBlending.blendConstants[2] = 0.0f;
		colorBlending.blendConstants[3] = 0.0f;

		VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
		pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
		pipelineLayoutInfo.setLayoutCount = 1; // Optional
		pipelineLayoutInfo.pSetLayouts = &descriptorSetLayout; // Optional
		pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional
		pipelineLayoutInfo.pPushConstantRanges = 0; // Optional

		if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
			throw std::runtime_error("failed to create pipeline layout!");
		}

		VkGraphicsPipelineCreateInfo pipelineInfo = {};
		pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
		pipelineInfo.stageCount = 2;
		pipelineInfo.pStages = shaderStages;

		pipelineInfo.pVertexInputState = &vertexInputInfo;
		pipelineInfo.pInputAssemblyState = &inputAssembly;
		pipelineInfo.pViewportState = &viewportState;
		pipelineInfo.pRasterizationState = &rasterizer;
		pipelineInfo.pMultisampleState = &multisampling;
		pipelineInfo.pDepthStencilState = nullptr; // Optional
		pipelineInfo.pColorBlendState = &colorBlending;
		pipelineInfo.pDynamicState = nullptr; // Optional

		pipelineInfo.layout = pipelineLayout;
		pipelineInfo.renderPass = renderPass;
		pipelineInfo.subpass = 0;
		pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional
		pipelineInfo.basePipelineIndex = -1; // Optional

		if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
			throw std::runtime_error("failed to create graphics pipeline!");
		}

		vkDestroyShaderModule(device, fragShaderModule, nullptr);
		vkDestroyShaderModule(device, vertShaderModule, nullptr);
	}

	bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
		uint32_t extensionCount;
		vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);

		std::vector<VkExtensionProperties> availableExtensions(extensionCount);
		vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());

		std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());

		for (const auto& extension : availableExtensions) {
			requiredExtensions.erase(extension.extensionName);
		}

		return requiredExtensions.empty();
	}

	VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {
		if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
			return capabilities.currentExtent;
		}
		else {
			int width, height;
			glfwGetFramebufferSize(window, &width, &height);

			VkExtent2D actualExtent = {
				static_cast<uint32_t>(width),
				static_cast<uint32_t>(height)
			};
			//VkExtent2D actualExtent = { WIDTH, HEIGHT };
			actualExtent.width = std::max(capabilities.minImageExtent.width, std::min(capabilities.maxImageExtent.width, actualExtent.width));
			actualExtent.height = std::max(capabilities.minImageExtent.height, std::min(capabilities.maxImageExtent.height, actualExtent.height));

			return actualExtent;
		}
	}

	SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
		SwapChainSupportDetails details;

		vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);

		uint32_t formatCount;
		vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);

		if (formatCount != 0) {
			details.formats.resize(formatCount);
			vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data());
		}

		uint32_t presentModeCount;
		vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr);

		if (presentModeCount != 0) {
			details.presentModes.resize(presentModeCount);
			vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data());
		}

		return details;
	}

	VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
		if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) {
			return { VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR };
		}
		for (const auto& availableFormat : availableFormats) {
			if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
				return availableFormat;
			}
		}
		return availableFormats[0];
	}

	VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR> availablePresentModes) {
		VkPresentModeKHR bestMode = VK_PRESENT_MODE_FIFO_KHR;

		for (const auto& availablePresentMode : availablePresentModes) {
			if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
				return availablePresentMode;
			}
			else if (availablePresentMode == VK_PRESENT_MODE_IMMEDIATE_KHR) {
				bestMode = availablePresentMode;
			}
		}

		return bestMode;
	}

	QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
		QueueFamilyIndices indices;

		uint32_t queueFamilyCount = 0;
		vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);

		std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
		vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());

		int i = 0;
		for (const auto& queueFamily : queueFamilies) {
			if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
				indices.graphicsFamily = i;
			}

			VkBool32 presentSupport = false;
			vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);

			if (presentSupport) {
				indices.presentFamily = i;
			}

			if (indices.isComplete()) {
				break;
			}

			i++;
		}

		return indices;
	}

	std::vector<const char*> getRequiredExtensions() {
		uint32_t glfwExtensionCount = 0;
		const char** glfwExtensions;
		glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);

		std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);

		if (enableValidationLayers) {
			extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
		}

		return extensions;
	}

	bool checkValidationLayerSupport() {
		uint32_t layerCount;
		vkEnumerateInstanceLayerProperties(&layerCount, nullptr);

		std::vector<VkLayerProperties> availableLayers(layerCount);
		vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());

		for (const char* layerName : validationLayers) {
			bool layerFound = false;

			for (const auto& layerProperties : availableLayers) {
				if (strcmp(layerName, layerProperties.layerName) == 0) {
					layerFound = true;
					break;
				}
			}

			if (!layerFound) {
				return false;
			}
		}

		return true;
	}

	static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) {
		std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;

		return VK_FALSE;
	}
};

int main() {
	HelloTriangleApplication app;

	try {
		app.run();
	}
	catch (const std::exception& e) {
		std::cerr << e.what() << std::endl;
		return EXIT_FAILURE;
	}

	return EXIT_SUCCESS;
}
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章