Vulkan填坑學習Day23—描述符池和集合

Vulkan 描述符池和集合

Vulkan 描述符池和集合,描述符佈局描述了可以綁定的描述符的類型。在本章節,我們創建描述符集,它將實際指定一個VkBuffer來綁定到一個uniform buffer描述符。

一、描述符池

描述符集合不能直接創建,它們必須像命令緩衝區一樣,從對象池中分配使用。對於描述符集合相當於調用描述符對象池。我們將寫一個新的函數createDescriptorPool來配置。

void initVulkan() {
    ...
    createUniformBuffer();
    createDescriptorPool();
    ...
}

...

void createDescriptorPool() {

}

我們首先需要明確我們使用的描述符集合包含的描述符類型與數量,這裏使用VkDescriptorPoolSize結構體。

VkDescriptorPoolSize poolSize = {};
poolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
poolSize.descriptorCount = 1;

現在我們只有一個uniform buffer類型的單描述符。對象池大小將被VkDescriptorPoolCreateInfo結構體引用:

VkDescriptorPoolCreateInfo poolInfo = {};
poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
poolInfo.poolSizeCount = 1;
poolInfo.pPoolSizes = &poolSize;

我們也需要指定最大的描述符集合的分配數量:

poolInfo.maxSets = 1;

該結構體與命令對象池類似,有一些可選項用於決定每個描述符集合是否可以獨立管理生命週期:VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT。創建完畢後我們不會進一步使用它,所以我們不需要該flag。在這裏設置flags默認值爲0。

VkDescriptorPool descriptorPool;

...

if (vkCreateDescriptorPool(device, &poolInfo, nullptr, &descriptorPool) != VK_SUCCESS) {
    throw std::runtime_error("failed to create descriptor pool!");
}

添加新的類成員對象保存描述符對象池的句柄,通過調用vkCreateDescriptorPool創建它。與其他繪製資源一樣,描述符對象池應該僅在程序退出的時候銷燬:

void cleanup() {
    cleanupSwapChain();

    vkDestroyDescriptorPool(device, descriptorPool, nullptr);

    ...
}

二、描述符集合

爲了從對象池中分配描述符集合,我們需要添加一個createDescriptorSet函數:

void initVulkan() {
    ...
    createDescriptorPool();
    createDescriptorSet();
    ...
}

...

void createDescriptorSet() {

}

描述符集合通過VkDescriptorSetAllocateInfo結構體描述具體的分配。需要指定用於分配的描述符對象池,分配的描述符集合數量,以及基於此的描述符佈局:

VkDescriptorSetLayout layouts[] = {descriptorSetLayout};
VkDescriptorSetAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = descriptorPool;
allocInfo.descriptorSetCount = 1;
allocInfo.pSetLayouts = layouts;

添加類成員存儲描述符集合的句柄,並使用vkAllocateDescriptorSets分配:

VkDescriptorPool descriptorPool;
VkDescriptorSet descriptorSet;

...

if (vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet) != VK_SUCCESS) {
    throw std::runtime_error("failed to allocate descriptor set!");
}

我們不需要明確清理描述符集合,因爲它們會在描述符對象池銷燬的時候自動清理。調用vkAllocateDescriptorSets會分配一個具有uniform buffer描述符的描述符集合。

描述符集合已經分配了,但是內部的描述符需要配置。描述符需要引用緩衝區,就像uniform buffer描述符,使用VkDescriptorBufferInfo結構體進行配置。該結構體指定緩衝區和描述符內部包含的數據的區域:

VkDescriptorBufferInfo bufferInfo = {};
bufferInfo.buffer = uniformBuffer;
bufferInfo.offset = 0;
bufferInfo.range = sizeof(UniformBufferObject);

描述符的配置更新使用vkUpdateDescriptorSets函數,它需要VkWriteDescriptorSet結構體的數組作爲參數。

VkWriteDescriptorSet descriptorWrite = {};
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.dstSet = descriptorSet;
descriptorWrite.dstBinding = 0;
descriptorWrite.dstArrayElement = 0;

前兩個字段指定描述符集合更新和綁定的設置。我們爲 uniform buffer 綁定的索引設定爲0。描述符可以是數組,所以我們需要指定要更新的數組索引。在這裏沒有使用數組,所以簡單的設置爲0。

descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorWrite.descriptorCount = 1;

我們在這裏再一次指定描述符類型。可以通過數組一次性更新多個描述符,使用dstArrayElement起始索引。descriptorCount字段描述多少描述符需要被更新。

descriptorWrite.pBufferInfo = &bufferInfo;
descriptorWrite.pImageInfo = nullptr; // Optional
descriptorWrite.pTexelBufferView = nullptr; // Optional

最後的字段引用descriptorCount結構體的數組,它配置了實際的描述符。它的類型根據實際需要的三個描述符類型來設定。pBufferInfo字段用於指定描述符引用的緩衝區數據,pImageInfo字段用於指定描述符引用的圖像數據,描述符使用pTexelBufferView引用緩衝區視圖。我們的描述符是基於緩衝區的,所以我們使用pBufferInfo。

vkUpdateDescriptorSets(device, 1, &descriptorWrite, 0, nullptr);

使用vkUpdateDescriptorSets應用實際的更新。它接受兩種數組的參數:一個數組是VkWriteDescriptorSet,另一個是VkCopyDescriptorSet。後一個數組可以用於兩個描述符之間進行拷貝操作。

三、使用描述符集合

我們現在需要更新createCommandBuffers函數,使用cmdBindDescriptorSets將描述符集合綁定到實際的着色器的描述符中:

vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);

與頂點和索引緩衝區不同,描述符集合不是圖形管線唯一的。因此,我們需要指定是否要將描述符集綁定到圖形或者計算管線。下一個參數是描述符所基於的佈局。接下來的三個參數指定首個描述符的索引,要綁定的集合的數量以及要綁定的集合的數組。我們稍後回來。最後兩個參數指定用於動態描述符的偏移數組。我們在後續的章節中會看到這些。

如果此時運行程序,會看不到任何內容在屏幕上。問題在於,由於我們在投影矩陣中進行了Y-flip操作,所以頂點現在以順時針順序而不是逆時針順序繪製。這導致背面剔除以防止任何背面的集合體被繪製。來到createGraphicsPipeline函數,修改VkPipelineRasterizationStateCreateInfo結構體的frontFace如下:

rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;

運行程序將會看到如下角度旋轉的效果:
在這裏插入圖片描述

矩形已經變爲正方形,因爲投影矩陣現在修正了寬高比。updateUniformData需要考慮屏幕的尺寸大小變化,所以我們不需要重新創建描述符集合在recreateSwapChain中。

四、多個描述符集

正如某些結構體和函數調用時候的提示所示,實際上可以綁定多個描述符集合。你需要在管線創建佈局的時候爲每個描述符集合指定描述符佈局。着色器可以引用具體的描述符集合如下:

layout(set = 0, binding = 0) uniform UniformBufferObject { ... }

我們可以使用此功能將每個對象和發生變化的描述符分配到單獨的描述符集合中,在這種情況下,可以避免重新綁定大部分描述符,而這些描述符可能會更有效率。

附:源碼

//22_descriptor_layout.cpp
#define GLFW_INCLUDE_VULKAN
#define GLM_FORCE_RADIANS
#include <GLFW/glfw3.h>
#include <fstream>
#include <iostream>
#include <stdexcept>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <optional>
#include <set>
#include <array>
#include <algorithm>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <chrono>

const int WIDTH = 800;
const int HEIGHT = 600;
const int MAX_FRAMES_IN_FLIGHT = 2;

const std::vector<const char*> validationLayers = {
	"VK_LAYER_KHRONOS_validation"
};

const std::vector<const char*> deviceExtensions = {
	VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endif

VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
	auto func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
	if (func != nullptr) {
		return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
	}
	else {
		return VK_ERROR_EXTENSION_NOT_PRESENT;
	}
}

void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
	auto func = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
	if (func != nullptr) {
		func(instance, debugMessenger, pAllocator);
	}
}

struct QueueFamilyIndices {
	uint32_t graphicsFamily = -1;
	uint32_t presentFamily = -1;

	bool isComplete() {
		return graphicsFamily >= 0 && presentFamily >= 0;
	}
};

struct SwapChainSupportDetails {
	VkSurfaceCapabilitiesKHR capabilities;
	std::vector<VkSurfaceFormatKHR> formats;
	std::vector<VkPresentModeKHR> presentModes;
};

struct Vertex {
	glm::vec2 pos;
	glm::vec3 color;

	//綁定描述
	static VkVertexInputBindingDescription getBindingDescription() {
		VkVertexInputBindingDescription bindingDescription = {};
		bindingDescription.binding = 0;
		bindingDescription.stride = sizeof(Vertex);
		bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

		return bindingDescription;
	}

	//屬性描述
	static std::array<VkVertexInputAttributeDescription, 2> getAttributeDescriptions() {
		std::array<VkVertexInputAttributeDescription, 2> attributeDescriptions = {};

		attributeDescriptions[0].binding = 0;
		attributeDescriptions[0].location = 0;
		attributeDescriptions[0].format = VK_FORMAT_R32G32_SFLOAT;
		attributeDescriptions[0].offset = offsetof(Vertex, pos);

		attributeDescriptions[1].binding = 0;
		attributeDescriptions[1].location = 1;
		attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
		attributeDescriptions[1].offset = offsetof(Vertex, color);

		return attributeDescriptions;
	}
};

struct UniformBufferObject {
	glm::mat4 model;
	glm::mat4 view;
	glm::mat4 proj;
};

const std::vector<Vertex> vertices = {
	{{-0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}},
	{{0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}},
	{{0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}},
	{{-0.5f, 0.5f}, {1.0f, 1.0f, 1.0f}}
};

const std::vector<uint16_t> indices = {
	0, 1, 2, 2, 3, 0
};

class HelloTriangleApplication {
public:
	void run() {
		initWindow();
		initVulkan();
		mainLoop();
		cleanup();
	}

private:
	GLFWwindow* window;

	VkInstance instance;
	VkDebugUtilsMessengerEXT debugMessenger;
	VkSurfaceKHR surface;

	VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
	VkDevice device;

	VkQueue graphicsQueue;
	VkQueue presentQueue;

	VkSwapchainKHR swapChain;
	std::vector<VkImage> swapChainImages;
	VkFormat swapChainImageFormat;
	VkExtent2D swapChainExtent;

	std::vector<VkImageView> swapChainImageViews;

	VkRenderPass renderPass;
	VkDescriptorSetLayout descriptorSetLayout;
	VkPipelineLayout pipelineLayout;
	VkPipeline graphicsPipeline;
	std::vector<VkFramebuffer> swapChainFramebuffers;

	VkCommandPool commandPool;
	std::vector<VkCommandBuffer> commandBuffers;

	VkSemaphore imageAvailableSemaphore;
	VkSemaphore renderFinishedSemaphore;

	std::vector<VkSemaphore> imageAvailableSemaphores;
	std::vector<VkSemaphore> renderFinishedSemaphores;
	std::vector<VkFence> inFlightFences;
	std::vector<VkFence> imagesInFlight;
	size_t currentFrame = 0;

	VkBuffer vertexBuffer;
	VkDeviceMemory vertexBufferMemory;
	VkBuffer indexBuffer;
	VkDeviceMemory indexBufferMemory;
	VkBuffer uniformBuffer;
	VkDeviceMemory uniformBufferMemory;

	VkDescriptorPool descriptorPool;
	VkDescriptorSet descriptorSet;

	void initWindow() {
		glfwInit();

		glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
		//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);

		window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan_Day23_descriptor_layout", nullptr, nullptr);

		glfwSetWindowUserPointer(window, this);
		glfwSetWindowSizeCallback(window, HelloTriangleApplication::onWindowResized);
	}

	void initVulkan() {
		createInstance();
		setupDebugMessenger();
		createSurface();
		pickPhysicalDevice();
		createLogicalDevice();
		createSwapChain();
		createImageViews();
		createRenderPass();
		createDescriptorSetLayout();
		createGraphicsPipeline();
		createFramebuffers();
		createCommandPool();
		createVertexBuffer();
		createIndexBuffer();
		createUniformBuffer();
		createDescriptorPool();
		createDescriptorSet();
		createCommandBuffers();
		createSemaphores();
	}

	void mainLoop() {
		while (!glfwWindowShouldClose(window)) {
			glfwPollEvents();
			updateUniformBuffer();
			drawFrame();
		}

		vkDeviceWaitIdle(device);
	}

	void cleanup() {
		cleanupSwapChain();

		vkDestroyDescriptorPool(device, descriptorPool, nullptr);
		vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
		vkDestroyBuffer(device, uniformBuffer, nullptr);
		vkFreeMemory(device, uniformBufferMemory, nullptr);
		vkDestroyBuffer(device, indexBuffer, nullptr);
		vkFreeMemory(device, indexBufferMemory, nullptr);
		vkDestroyBuffer(device, vertexBuffer, nullptr);
		vkFreeMemory(device, vertexBufferMemory, nullptr);

		for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
			vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr);
			vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr);
			vkDestroyFence(device, inFlightFences[i], nullptr);
		}

		vkDestroyCommandPool(device, commandPool, nullptr);

		vkDestroyDevice(device, nullptr);

		if (enableValidationLayers) {
			DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
		}

		vkDestroySurfaceKHR(instance, surface, nullptr);
		vkDestroyInstance(instance, nullptr);

		glfwDestroyWindow(window);

		glfwTerminate();
	}

	void updateUniformBuffer() {
		static auto startTime = std::chrono::high_resolution_clock::now();
		auto currentTime = std::chrono::high_resolution_clock::now();
		float time = std::chrono::duration_cast<std::chrono::milliseconds>(currentTime - startTime).count() / 1000.0f;

		UniformBufferObject ubo = {};
		ubo.model = glm::rotate(glm::mat4(1.0f), time * glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f));

		ubo.view = glm::lookAt(glm::vec3(2.0f, 2.0f, 2.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f));

		ubo.proj = glm::perspective(glm::radians(45.0f), swapChainExtent.width / (float)swapChainExtent.height, 0.1f, 10.0f);

		ubo.proj[1][1] *= -1;

		void* data;
		vkMapMemory(device, uniformBufferMemory, 0, sizeof(ubo), 0, &data);
		memcpy(data, &ubo, sizeof(ubo));
		vkUnmapMemory(device, uniformBufferMemory);
	}

	void drawFrame() {
		vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX);

		uint32_t imageIndex;
		VkResult result = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);

		if (result == VK_ERROR_OUT_OF_DATE_KHR) {
			recreateSwapChain();
			return;
		}
		else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
			throw std::runtime_error("failed to acquire swap chain image!");
		}

		if (imagesInFlight[imageIndex] != VK_NULL_HANDLE) {
			vkWaitForFences(device, 1, &imagesInFlight[imageIndex], VK_TRUE, UINT64_MAX);
		}
		imagesInFlight[imageIndex] = inFlightFences[currentFrame];

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

		VkSemaphore waitSemaphores[] = { imageAvailableSemaphores[currentFrame] };
		VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
		submitInfo.waitSemaphoreCount = 1;
		submitInfo.pWaitSemaphores = waitSemaphores;
		submitInfo.pWaitDstStageMask = waitStages;

		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffers[imageIndex];

		VkSemaphore signalSemaphores[] = { renderFinishedSemaphores[currentFrame] };
		submitInfo.signalSemaphoreCount = 1;
		submitInfo.pSignalSemaphores = signalSemaphores;

		vkResetFences(device, 1, &inFlightFences[currentFrame]);

		if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]) != VK_SUCCESS) {
			throw std::runtime_error("failed to submit draw command buffer!");
		}

		VkPresentInfoKHR presentInfo = {};
		presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;

		presentInfo.waitSemaphoreCount = 1;
		presentInfo.pWaitSemaphores = signalSemaphores;

		VkSwapchainKHR swapChains[] = { swapChain };
		presentInfo.swapchainCount = 1;
		presentInfo.pSwapchains = swapChains;

		presentInfo.pImageIndices = &imageIndex;

		result = vkQueuePresentKHR(presentQueue, &presentInfo);

		if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
			recreateSwapChain();
		}
		else if (result != VK_SUCCESS) {
			throw std::runtime_error("failed to present swap chain image!");
		}

		currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
	}

	static void onWindowResized(GLFWwindow* window, int width, int height) {
		if (width == 0 || height == 0) return;

		HelloTriangleApplication* app = reinterpret_cast<HelloTriangleApplication*>(glfwGetWindowUserPointer(window));
		app->recreateSwapChain();
	}

	void cleanupSwapChain() {
		for (auto framebuffer : swapChainFramebuffers) {
			vkDestroyFramebuffer(device, framebuffer, nullptr);
		}

		vkFreeCommandBuffers(device, commandPool, static_cast<uint32_t>(commandBuffers.size()), commandBuffers.data());

		vkDestroyPipeline(device, graphicsPipeline, nullptr);
		vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
		vkDestroyRenderPass(device, renderPass, nullptr);

		for (auto imageView : swapChainImageViews) {
			vkDestroyImageView(device, imageView, nullptr);
		}

		vkDestroySwapchainKHR(device, swapChain, nullptr);
	}

	void recreateSwapChain() {
		int width = 0, height = 0;
		glfwGetFramebufferSize(window, &width, &height);
		while (width == 0 || height == 0) {
			glfwGetFramebufferSize(window, &width, &height);
			glfwWaitEvents();
		}

		vkDeviceWaitIdle(device);

		cleanupSwapChain();

		createSwapChain();
		createImageViews();
		createRenderPass();
		createGraphicsPipeline();
		createFramebuffers();
		createCommandBuffers();
	}

	void createInstance() {
		if (enableValidationLayers && !checkValidationLayerSupport()) {
			throw std::runtime_error("validation layers requested, but not available!");
		}

		VkApplicationInfo appInfo = {};
		appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
		appInfo.pApplicationName = "Hello Triangle";
		appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
		appInfo.pEngineName = "No Engine";
		appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
		appInfo.apiVersion = VK_API_VERSION_1_0;

		VkInstanceCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
		createInfo.pApplicationInfo = &appInfo;

		auto extensions = getRequiredExtensions();
		createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
		createInfo.ppEnabledExtensionNames = extensions.data();

		VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo;
		if (enableValidationLayers) {
			createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
			createInfo.ppEnabledLayerNames = validationLayers.data();

			populateDebugMessengerCreateInfo(debugCreateInfo);
			createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*)&debugCreateInfo;
		}
		else {
			createInfo.enabledLayerCount = 0;

			createInfo.pNext = nullptr;
		}

		if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
			throw std::runtime_error("failed to create instance!");
		}
	}

	void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
		createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
		createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
		createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
		createInfo.pfnUserCallback = debugCallback;
	}

	void setupDebugMessenger() {
		if (!enableValidationLayers) return;

		VkDebugUtilsMessengerCreateInfoEXT createInfo;
		populateDebugMessengerCreateInfo(createInfo);

		if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
			throw std::runtime_error("failed to set up debug messenger!");
		}
	}

	void createImageViews() {
		swapChainImageViews.resize(swapChainImages.size());
		for (size_t i = 0; i < swapChainImages.size(); i++) {
			VkImageViewCreateInfo createInfo = {};
			createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
			createInfo.image = swapChainImages[i];
			createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
			createInfo.format = swapChainImageFormat;
			createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
			createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
			createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
			createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
			createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
			createInfo.subresourceRange.baseMipLevel = 0;
			createInfo.subresourceRange.levelCount = 1;
			createInfo.subresourceRange.baseArrayLayer = 0;
			createInfo.subresourceRange.layerCount = 1;

			if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create image views!");
			}
		}
	}

	void createSurface() {
		if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) {
			throw std::runtime_error("failed to create window surface!");
		}
	}

	void pickPhysicalDevice() {
		uint32_t deviceCount = 0;
		vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

		if (deviceCount == 0) {
			throw std::runtime_error("failed to find GPUs with Vulkan support!");
		}

		std::vector<VkPhysicalDevice> devices(deviceCount);
		vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());

		for (const auto& device : devices) {
			if (isDeviceSuitable(device)) {
				physicalDevice = device;
				break;
			}
		}

		if (physicalDevice == VK_NULL_HANDLE) {
			throw std::runtime_error("failed to find a suitable GPU!");
		}
	}

	void createLogicalDevice() {
		QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
		std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
		std::set<uint32_t> uniqueQueueFamilies = { indices.graphicsFamily, indices.presentFamily };
		float queuePriority = 1.0f;
		for (int queueFamily : uniqueQueueFamilies) {
			VkDeviceQueueCreateInfo queueCreateInfo = {};
			queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
			queueCreateInfo.queueFamilyIndex = queueFamily;
			queueCreateInfo.queueCount = 1;
			queueCreateInfo.pQueuePriorities = &queuePriority;
			queueCreateInfos.push_back(queueCreateInfo);
		}

		VkPhysicalDeviceFeatures deviceFeatures = {};

		VkDeviceCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

		createInfo.pQueueCreateInfos = queueCreateInfos.data();
		createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());

		createInfo.pEnabledFeatures = &deviceFeatures;

		createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
		createInfo.ppEnabledExtensionNames = deviceExtensions.data();

		if (enableValidationLayers) {
			createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
			createInfo.ppEnabledLayerNames = validationLayers.data();
		}
		else {
			createInfo.enabledLayerCount = 0;
		}

		if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
			throw std::runtime_error("failed to create logical device!");
		}

		vkGetDeviceQueue(device, indices.graphicsFamily, 0, &graphicsQueue);
		vkGetDeviceQueue(device, indices.presentFamily, 0, &presentQueue);
	}

	void createSwapChain() {
		SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);

		VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
		VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
		VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);

		uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
		if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
			imageCount = swapChainSupport.capabilities.maxImageCount;
		}

		VkSwapchainCreateInfoKHR createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
		createInfo.surface = surface;

		createInfo.minImageCount = imageCount;
		createInfo.imageFormat = surfaceFormat.format;
		createInfo.imageColorSpace = surfaceFormat.colorSpace;
		createInfo.imageExtent = extent;
		createInfo.imageArrayLayers = 1;
		createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

		QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
		uint32_t queueFamilyIndices[] = { (uint32_t)indices.graphicsFamily, (uint32_t)indices.presentFamily };

		if (indices.graphicsFamily != indices.presentFamily) {
			createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
			createInfo.queueFamilyIndexCount = 2;
			createInfo.pQueueFamilyIndices = queueFamilyIndices;
		}
		else {
			createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
			createInfo.queueFamilyIndexCount = 0; // Optional
			createInfo.pQueueFamilyIndices = nullptr; // Optional
		}

		createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
		createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
		createInfo.presentMode = presentMode;
		createInfo.clipped = VK_TRUE;
		createInfo.oldSwapchain = VK_NULL_HANDLE;

		if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
			throw std::runtime_error("failed to create swap chain!");
		}

		vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
		swapChainImages.resize(imageCount);
		vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());
		swapChainImageFormat = surfaceFormat.format;
		swapChainExtent = extent;
	}

	bool isDeviceSuitable(VkPhysicalDevice device) {
		QueueFamilyIndices indices = findQueueFamilies(device);
		bool extensionsSupported = checkDeviceExtensionSupport(device);

		bool swapChainAdequate = false;
		if (extensionsSupported) {
			SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
			swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
		}
		return indices.isComplete() && extensionsSupported && swapChainAdequate;
	}

	void createRenderPass() {
		VkAttachmentDescription colorAttachment = {};
		colorAttachment.format = swapChainImageFormat;
		colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
		colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
		colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
		colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
		colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
		colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
		colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

		VkAttachmentReference colorAttachmentRef = {};
		colorAttachmentRef.attachment = 0;
		colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

		VkSubpassDescription subpass = {};
		subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;

		subpass.colorAttachmentCount = 1;
		subpass.pColorAttachments = &colorAttachmentRef;

		VkRenderPassCreateInfo renderPassInfo = {};
		renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
		renderPassInfo.attachmentCount = 1;
		renderPassInfo.pAttachments = &colorAttachment;
		renderPassInfo.subpassCount = 1;
		renderPassInfo.pSubpasses = &subpass;
		VkSubpassDependency dependency = {};
		dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
		dependency.dstSubpass = 0;
		dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
		dependency.srcAccessMask = 0;
		dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
		dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
		renderPassInfo.dependencyCount = 1;
		renderPassInfo.pDependencies = &dependency;

		if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
			throw std::runtime_error("failed to create render pass!");
		}
	}

	VkShaderModule createShaderModule(const std::vector<char>& code) {
		VkShaderModuleCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
		createInfo.codeSize = code.size();

		createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());

		VkShaderModule shaderModule;
		if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
			throw std::runtime_error("failed to create shader module!");
		}
		return shaderModule;
	}

	static std::vector<char> readFile(const std::string& filename) {
		std::ifstream file(filename, std::ios::ate | std::ios::binary);

		if (!file.is_open()) {
			throw std::runtime_error("failed to open file!");
		}
		size_t fileSize = (size_t)file.tellg();
		std::vector<char> buffer(fileSize);
		file.seekg(0);
		file.read(buffer.data(), fileSize);
		file.close();
		return buffer;
	}

	void createSemaphores() {
		imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
		renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
		inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);
		imagesInFlight.resize(swapChainImages.size(), VK_NULL_HANDLE);

		VkSemaphoreCreateInfo semaphoreInfo = {};
		semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;

		VkFenceCreateInfo fenceInfo = {};
		fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
		fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;

		for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
			if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS ||
				vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS ||
				vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create synchronization objects for a frame!");
			}
		}
	}

	void createCommandBuffers() {
		commandBuffers.resize(swapChainFramebuffers.size());
		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.commandPool = commandPool;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandBufferCount = (uint32_t)commandBuffers.size();

		if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate command buffers!");
		}

		for (size_t i = 0; i < commandBuffers.size(); i++) {
			VkCommandBufferBeginInfo beginInfo = {};
			beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
			beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
			beginInfo.pInheritanceInfo = nullptr; // Optional

			vkBeginCommandBuffer(commandBuffers[i], &beginInfo);

			VkRenderPassBeginInfo renderPassInfo = {};
			renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
			renderPassInfo.renderPass = renderPass;
			renderPassInfo.framebuffer = swapChainFramebuffers[i];

			renderPassInfo.renderArea.offset = { 0, 0 };
			renderPassInfo.renderArea.extent = swapChainExtent;

			VkClearValue clearColor = { 0.1f, 0.1f, 0.3f, 0.6f };
			renderPassInfo.clearValueCount = 1;
			renderPassInfo.pClearValues = &clearColor;
			vkCmdBeginRenderPass(commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);

			//渲染期間綁定緩衝區
			vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

			VkBuffer vertexBuffers[] = { vertexBuffer };
			VkDeviceSize offsets[] = { 0 };
			//綁定頂點緩衝區
			vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets);

			vkCmdBindIndexBuffer(commandBuffers[i], indexBuffer, 0, VK_INDEX_TYPE_UINT16);

			vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);

			vkCmdDrawIndexed(commandBuffers[i], static_cast<uint32_t>(indices.size()), 1, 0, 0, 0);

			//vkCmdDraw(commandBuffers[i], static_cast<uint32_t>(vertices.size()), 1, 0, 0);

			vkCmdEndRenderPass(commandBuffers[i]);

			if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to record command buffer!");
			}
		}

	}

	void createCommandPool() {
		QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);

		VkCommandPoolCreateInfo poolInfo = {};
		poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
		poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily;
		poolInfo.flags = 0; // Optional

		if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
			throw std::runtime_error("failed to create command pool!");
		}
	}

	// 創建頂點緩衝區
	void createVertexBuffer() {

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;

		VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		//*****填充頂點緩衝區*****
		void* data;
		//將緩衝區內存映射(mapping the buffer memory)到CPU可訪問的內存中完成
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
		//將頂點數據拷貝到映射內存中
		memcpy(data, vertices.data(), (size_t)bufferSize);
		//取消映射
		vkUnmapMemory(device, stagingBufferMemory);

		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory);

		copyBuffer(stagingBuffer, vertexBuffer, bufferSize);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}

	// 創建索引緩衝區
	void createIndexBuffer() {
		VkDeviceSize bufferSize = sizeof(indices[0]) * indices.size();

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		void* data;
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
		memcpy(data, indices.data(), (size_t)bufferSize);
		vkUnmapMemory(device, stagingBufferMemory);

		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory);

		copyBuffer(stagingBuffer, indexBuffer, bufferSize);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}

	void createUniformBuffer() {
		VkDeviceSize bufferSize = sizeof(UniformBufferObject);
		createBuffer(bufferSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, uniformBuffer, uniformBufferMemory);
	}

	void createDescriptorPool() {
		VkDescriptorPoolSize poolSize = {};
		poolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		poolSize.descriptorCount = 1;

		VkDescriptorPoolCreateInfo poolInfo = {};
		poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
		poolInfo.poolSizeCount = 1;
		poolInfo.pPoolSizes = &poolSize;
		poolInfo.maxSets = 1;
		if (vkCreateDescriptorPool(device, &poolInfo, nullptr, &descriptorPool) != VK_SUCCESS) {
			throw std::runtime_error("failed to create descriptor pool!");
		}
	}

	void createDescriptorSet() {
		VkDescriptorSetLayout layouts[] = { descriptorSetLayout };
		VkDescriptorSetAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
		allocInfo.descriptorPool = descriptorPool;
		allocInfo.descriptorSetCount = 1;
		allocInfo.pSetLayouts = layouts;
		if (vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate descriptor set!");
		}

		VkDescriptorBufferInfo bufferInfo = {};
		bufferInfo.buffer = uniformBuffer;
		bufferInfo.offset = 0;
		bufferInfo.range = sizeof(UniformBufferObject);
		VkWriteDescriptorSet descriptorWrite = {};
		descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
		descriptorWrite.dstSet = descriptorSet;
		descriptorWrite.dstBinding = 0;
		descriptorWrite.dstArrayElement = 0;
		descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		descriptorWrite.descriptorCount = 1;
		descriptorWrite.pBufferInfo = &bufferInfo;
		descriptorWrite.pImageInfo = nullptr; // Optional
		descriptorWrite.pTexelBufferView = nullptr; // Optional
		vkUpdateDescriptorSets(device, 1, &descriptorWrite, 0, nullptr);

	}

	//創建緩衝區
	void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer& buffer, VkDeviceMemory& bufferMemory) {

		//創建緩衝區
		VkBufferCreateInfo bufferInfo = {};
		bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
		bufferInfo.size = size;
		bufferInfo.usage = usage;
		bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
		if (vkCreateBuffer(device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
			throw std::runtime_error("failed to create buffer!");
		}

		//內存需求
		VkMemoryRequirements memRequirements;
		vkGetBufferMemoryRequirements(device, buffer, &memRequirements);

		//內存分配
		VkMemoryAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
		allocInfo.allocationSize = memRequirements.size;
		allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);

		if (vkAllocateMemory(device, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate buffer memory!");
		}
		//將內存關聯到緩衝區
		vkBindBufferMemory(device, buffer, bufferMemory, 0);
	}

	//用於從一個緩衝區拷貝數據到另一個緩衝區
	void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {
		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandPool = commandPool;
		allocInfo.commandBufferCount = 1;

		VkCommandBuffer commandBuffer;
		vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);

		VkCommandBufferBeginInfo beginInfo = {};
		beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
		beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;

		vkBeginCommandBuffer(commandBuffer, &beginInfo);

		VkBufferCopy copyRegion = {};
		copyRegion.size = size;
		vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, &copyRegion);

		vkEndCommandBuffer(commandBuffer);

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffer;

		vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
		vkQueueWaitIdle(graphicsQueue);

		vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);
	}

	uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
		VkPhysicalDeviceMemoryProperties memProperties;
		vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);

		for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
			if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
				return i;
			}
		}

		throw std::runtime_error("failed to find suitable memory type!");
	}

	void createFramebuffers() {
		swapChainFramebuffers.resize(swapChainImageViews.size());
		for (size_t i = 0; i < swapChainImageViews.size(); i++) {
			VkImageView attachments[] = {
				swapChainImageViews[i]
			};

			VkFramebufferCreateInfo framebufferInfo = {};
			framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
			framebufferInfo.renderPass = renderPass;
			framebufferInfo.attachmentCount = 1;
			framebufferInfo.pAttachments = attachments;
			framebufferInfo.width = swapChainExtent.width;
			framebufferInfo.height = swapChainExtent.height;
			framebufferInfo.layers = 1;

			if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create framebuffer!");
			}
		}
	}

	void createDescriptorSetLayout() {
		VkDescriptorSetLayoutBinding uboLayoutBinding = {};
		uboLayoutBinding.binding = 0;
		uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		uboLayoutBinding.descriptorCount = 1;
		uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
		uboLayoutBinding.pImmutableSamplers = nullptr; // Optional

		VkDescriptorSetLayoutCreateInfo layoutInfo = {};
		layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
		layoutInfo.bindingCount = 1;
		layoutInfo.pBindings = &uboLayoutBinding;

		if (vkCreateDescriptorSetLayout(device, &layoutInfo, nullptr, &descriptorSetLayout) != VK_SUCCESS) {
			throw std::runtime_error("failed to create descriptor set layout!");
		}
	}

	void createGraphicsPipeline() {
		auto vertShaderCode = readFile("shader.vert.spv");
		auto fragShaderCode = readFile("shader.frag.spv");

		VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
		VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);

		VkPipelineShaderStageCreateInfo vertShaderStageInfo = {};
		vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
		vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
		vertShaderStageInfo.module = vertShaderModule;
		vertShaderStageInfo.pName = "main";

		VkPipelineShaderStageCreateInfo fragShaderStageInfo = {};
		fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
		fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
		fragShaderStageInfo.module = fragShaderModule;
		fragShaderStageInfo.pName = "main";

		VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, fragShaderStageInfo };

		VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
		vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;

		//配置圖形管線可以接受重新定義的頂點數據的格式
		auto bindingDescription = Vertex::getBindingDescription();
		auto attributeDescriptions = Vertex::getAttributeDescriptions();

		vertexInputInfo.vertexBindingDescriptionCount = 1;
		vertexInputInfo.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
		vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
		vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();

		VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};
		inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
		inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
		inputAssembly.primitiveRestartEnable = VK_FALSE;

		VkViewport viewport = {};
		viewport.x = 0.0f;
		viewport.y = 0.0f;
		viewport.width = (float)swapChainExtent.width;
		viewport.height = (float)swapChainExtent.height;
		viewport.minDepth = 0.0f;
		viewport.maxDepth = 1.0f;

		VkRect2D scissor = {};
		scissor.offset = { 0, 0 };
		scissor.extent = swapChainExtent;

		VkPipelineViewportStateCreateInfo viewportState = {};
		viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
		viewportState.viewportCount = 1;
		viewportState.pViewports = &viewport;
		viewportState.scissorCount = 1;
		viewportState.pScissors = &scissor;

		VkPipelineRasterizationStateCreateInfo rasterizer = {};
		rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
		rasterizer.depthClampEnable = VK_FALSE;
		rasterizer.rasterizerDiscardEnable = VK_FALSE;
		rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
		rasterizer.lineWidth = 1.0f;
		rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
		rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
		rasterizer.depthBiasEnable = VK_FALSE;

		VkPipelineMultisampleStateCreateInfo multisampling = {};
		multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
		multisampling.sampleShadingEnable = VK_FALSE;
		multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
		multisampling.minSampleShading = 1.0f; // Optional
		multisampling.pSampleMask = nullptr; // Optional
		multisampling.alphaToCoverageEnable = VK_FALSE; // Optional
		multisampling.alphaToOneEnable = VK_FALSE; // Optional

		VkPipelineColorBlendAttachmentState colorBlendAttachment = {};
		colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
		colorBlendAttachment.blendEnable = VK_FALSE;
		colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
		colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
		colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional
		colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
		colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
		colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional

		VkPipelineColorBlendStateCreateInfo colorBlending = {};
		colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
		colorBlending.logicOpEnable = VK_FALSE;
		colorBlending.logicOp = VK_LOGIC_OP_COPY;
		colorBlending.attachmentCount = 1;
		colorBlending.pAttachments = &colorBlendAttachment;
		colorBlending.blendConstants[0] = 0.0f;
		colorBlending.blendConstants[1] = 0.0f;
		colorBlending.blendConstants[2] = 0.0f;
		colorBlending.blendConstants[3] = 0.0f;

		VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
		pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
		pipelineLayoutInfo.setLayoutCount = 1; // Optional
		pipelineLayoutInfo.pSetLayouts = &descriptorSetLayout; // Optional
		pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional
		pipelineLayoutInfo.pPushConstantRanges = 0; // Optional

		if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
			throw std::runtime_error("failed to create pipeline layout!");
		}

		VkGraphicsPipelineCreateInfo pipelineInfo = {};
		pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
		pipelineInfo.stageCount = 2;
		pipelineInfo.pStages = shaderStages;

		pipelineInfo.pVertexInputState = &vertexInputInfo;
		pipelineInfo.pInputAssemblyState = &inputAssembly;
		pipelineInfo.pViewportState = &viewportState;
		pipelineInfo.pRasterizationState = &rasterizer;
		pipelineInfo.pMultisampleState = &multisampling;
		pipelineInfo.pDepthStencilState = nullptr; // Optional
		pipelineInfo.pColorBlendState = &colorBlending;
		pipelineInfo.pDynamicState = nullptr; // Optional

		pipelineInfo.layout = pipelineLayout;
		pipelineInfo.renderPass = renderPass;
		pipelineInfo.subpass = 0;
		pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional
		pipelineInfo.basePipelineIndex = -1; // Optional

		if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
			throw std::runtime_error("failed to create graphics pipeline!");
		}

		vkDestroyShaderModule(device, fragShaderModule, nullptr);
		vkDestroyShaderModule(device, vertShaderModule, nullptr);
	}

	bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
		uint32_t extensionCount;
		vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);

		std::vector<VkExtensionProperties> availableExtensions(extensionCount);
		vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());

		std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());

		for (const auto& extension : availableExtensions) {
			requiredExtensions.erase(extension.extensionName);
		}

		return requiredExtensions.empty();
	}

	VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {
		if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
			return capabilities.currentExtent;
		}
		else {
			int width, height;
			glfwGetFramebufferSize(window, &width, &height);

			VkExtent2D actualExtent = {
				static_cast<uint32_t>(width),
				static_cast<uint32_t>(height)
			};
			//VkExtent2D actualExtent = { WIDTH, HEIGHT };
			actualExtent.width = std::max(capabilities.minImageExtent.width, std::min(capabilities.maxImageExtent.width, actualExtent.width));
			actualExtent.height = std::max(capabilities.minImageExtent.height, std::min(capabilities.maxImageExtent.height, actualExtent.height));

			return actualExtent;
		}
	}

	SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
		SwapChainSupportDetails details;

		vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);

		uint32_t formatCount;
		vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);

		if (formatCount != 0) {
			details.formats.resize(formatCount);
			vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data());
		}

		uint32_t presentModeCount;
		vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr);

		if (presentModeCount != 0) {
			details.presentModes.resize(presentModeCount);
			vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data());
		}

		return details;
	}

	VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
		if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) {
			return { VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR };
		}
		for (const auto& availableFormat : availableFormats) {
			if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
				return availableFormat;
			}
		}
		return availableFormats[0];
	}

	VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR> availablePresentModes) {
		VkPresentModeKHR bestMode = VK_PRESENT_MODE_FIFO_KHR;

		for (const auto& availablePresentMode : availablePresentModes) {
			if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
				return availablePresentMode;
			}
			else if (availablePresentMode == VK_PRESENT_MODE_IMMEDIATE_KHR) {
				bestMode = availablePresentMode;
			}
		}

		return bestMode;
	}

	QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
		QueueFamilyIndices indices;

		uint32_t queueFamilyCount = 0;
		vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);

		std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
		vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());

		int i = 0;
		for (const auto& queueFamily : queueFamilies) {
			if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
				indices.graphicsFamily = i;
			}

			VkBool32 presentSupport = false;
			vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);

			if (presentSupport) {
				indices.presentFamily = i;
			}

			if (indices.isComplete()) {
				break;
			}

			i++;
		}

		return indices;
	}

	std::vector<const char*> getRequiredExtensions() {
		uint32_t glfwExtensionCount = 0;
		const char** glfwExtensions;
		glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);

		std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);

		if (enableValidationLayers) {
			extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
		}

		return extensions;
	}

	bool checkValidationLayerSupport() {
		uint32_t layerCount;
		vkEnumerateInstanceLayerProperties(&layerCount, nullptr);

		std::vector<VkLayerProperties> availableLayers(layerCount);
		vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());

		for (const char* layerName : validationLayers) {
			bool layerFound = false;

			for (const auto& layerProperties : availableLayers) {
				if (strcmp(layerName, layerProperties.layerName) == 0) {
					layerFound = true;
					break;
				}
			}

			if (!layerFound) {
				return false;
			}
		}

		return true;
	}

	static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) {
		std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;

		return VK_FALSE;
	}
};

int main() {
	HelloTriangleApplication app;

	try {
		app.run();
	}
	catch (const std::exception& e) {
		std::cerr << e.what() << std::endl;
		return EXIT_FAILURE;
	}

	return EXIT_SUCCESS;
}
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章