Vulkan填坑學習Day27-1—貼圖LOD(mipmap)

Vulkan 生成貼圖(mipmap)

Vulkan 生成貼圖(mipmap),現在我們的程序可以加載和渲染3D模型了。Mipmap廣泛應用於遊戲和渲染軟件,對於如何創建它們,Vulkan給了我們完全的控制權。

Mipmap是縮小版本的image,每個新image是前一張圖的寬度和高度的一半。Mipmap用於作爲細節級別(即Level of Detail)的一種方式。遠離相機的物體將從較小的mip圖像中採樣紋理。使用較小的圖像可以提高渲染速度,避免Moiré patterns這樣的鋸齒。示例如下:

在這裏插入圖片描述

一、圖像創建

在Vulkan中,每個mip圖像都保存在VkImage的不同的mip層裏。0級是原始圖像,0級之後的Mip級通常稱爲Mip鏈。

創建VkImage時指定mip級別的數量。到目前爲止,我們一直將這個值設置爲1。我們需要從圖像的維數來計算mip級別的數量。首先,添加一個類成員來存儲這個數字:

...
uint32_t mipLevels;
VkImage textureImage;
...

一旦我們在createTextureImage中加載紋理,就可以得到mipLevels的值:

int texWidth, texHeight, texChannels;
stbi_uc* pixels = stbi_load(TEXTURE_PATH.c_str(), &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
...
mipLevels = static_cast<uint32_t>(std::floor(std::log2(std::max(texWidth, texHeight)))) + 1;

這將計算mip鏈中的級別數。max函數選擇最大維度。log2函數計算維數除以2的次數。floor函數處理最大維度不是2的冪的情況。添加1使原始圖像具有mip級別。

要使用這個值,我們需要更改createImage、createImageView和transitionImageLayout函數,以允許我們指定mip級別的數量。在函數中添加一個mipLevels參數:

void createImage(uint32_t width, uint32_t height, uint32_t mipLevels, VkFormat format, VkImageTiling tiling, VkImageUsageFlags usage, VkMemoryPropertyFlags properties, VkImage& image, VkDeviceMemory& imageMemory) {
    ...
    imageInfo.mipLevels = mipLevels;
    ...
}
VkImageView createImageView(VkImage image, VkFormat format, VkImageAspectFlags aspectFlags, uint32_t mipLevels) {
    ...
    viewInfo.subresourceRange.levelCount = mipLevels;
    ...
void transitionImageLayout(VkImage image, VkFormat format, VkImageLayout oldLayout, VkImageLayout newLayout, uint32_t mipLevels) {
    ...
    barrier.subresourceRange.levelCount = mipLevels;
    ...

更新所有對這些函數的調用,使用正確的值:

createImage(swapChainExtent.width, swapChainExtent.height, 1, depthFormat, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, depthImage, depthImageMemory);
...
createImage(texWidth, texHeight, mipLevels, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, textureImage, textureImageMemory);
swapChainImageViews[i] = createImageView(swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT, 1);
...
depthImageView = createImageView(depthImage, depthFormat, VK_IMAGE_ASPECT_DEPTH_BIT, 1);
...
textureImageView = createImageView(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_ASPECT_COLOR_BIT, mipLevels);
transitionImageLayout(depthImage, depthFormat, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, 1);
...
transitionImageLayout(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, mipLevels);

二、生成貼圖

我們的紋理圖像現在有多個mip級別,但是staging緩衝區只能用於填充mip級別0。其他級別仍未定義。要填充這些級別,我們需要從現有的單個級別生成數據。我們將使用vkCmdBlitImage命令。此命令執行復制、縮放和篩選操作。我們將多次調用此函數,以將數據blit到紋理圖像的每個級別。

VkCmdBlit被認爲是一個傳輸操作,因此我們必須通知Vulkan,我們打算同時使用紋理圖像作爲傳輸的源和目標。在createTextureImage中,將VK_IMAGE_USAGE_TRANSFER_SRC_BIT添加到紋理圖像的使用標誌中:

...
createImage(texWidth, texHeight, mipLevels, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, textureImage, textureImageMemory);
...

與其他圖像操作一樣,vkCmdBlitImage取決於它所操作的圖像的佈局。我們可以將整個映像轉換爲VK_IMAGE_LAYOUT_GENERAL,但這很可能很慢。爲了獲得最佳性能,源映像應該位於VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL中,目標映像應該位於VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL中。Vulkan允許我們獨立地轉換圖像的每個mip級別。每blit一次只處理兩個mip級別,因此我們可以將每個級別轉換爲blits命令之間的最佳佈局。

transitionImageLayout只在整個圖像上執行佈局轉換,所以我們需要編寫更多的管道屏障命令。將createTextureImage中已有的轉換改爲VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL :

...
transitionImageLayout(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, mipLevels);
    copyBufferToImage(stagingBuffer, textureImage, static_cast<uint32_t>(texWidth), static_cast<uint32_t>(texHeight));
//transitioned to VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL while generating mipmaps
...

這將使VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL中的紋理圖像的每一層都是最優的。在blit命令讀取完成後,每個級別都將轉換爲VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL。

我們現在要寫一個生成mipmap的函數:

void generateMipmaps(VkImage image, int32_t texWidth, int32_t texHeight, uint32_t mipLevels) {
    VkCommandBuffer commandBuffer = beginSingleTimeCommands();

    VkImageMemoryBarrier barrier = {};
    barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    barrier.image = image;
    barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
    barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    barrier.subresourceRange.baseArrayLayer = 0;
    barrier.subresourceRange.layerCount = 1;
    barrier.subresourceRange.levelCount = 1;

    endSingleTimeCommands(commandBuffer);
}

我們將進行幾個轉換,因此我們將重用這個VkImageMemoryBarrier。以上設置的字段將對所有屏障保持不變。subresourceRange.miplevel, oldLayout, newLayout, srcAccessMask和dstAccessMask會隨着每個轉換而改變。

int32_t mipWidth = texWidth;
int32_t mipHeight = texHeight;

for (uint32_t i = 1; i < mipLevels; i++) {

}

這個循環將記錄每個VkCmdBlitImage命令。注意,循環變量從1開始,而不是0。

barrier.subresourceRange.baseMipLevel = i - 1;
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;

vkCmdPipelineBarrier(commandBuffer,
    VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
    0, nullptr,
    0, nullptr,
    1, &barrier);

首先,轉換級別從i - 1 到 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL。這個轉換將等待i - 1級別被填充,或者來自前面的blit命令,或者來自vkCmdCopyBufferToImage,當前blit命令將等待這次轉換。

VkImageBlit blit = {};
blit.srcOffsets[0] = { 0, 0, 0 };
blit.srcOffsets[1] = { mipWidth, mipHeight, 1 };
blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.srcSubresource.mipLevel = i - 1;
blit.srcSubresource.baseArrayLayer = 0;
blit.srcSubresource.layerCount = 1;
blit.dstOffsets[0] = { 0, 0, 0 };
blit.dstOffsets[1] = { mipWidth > 1 ? mipWidth / 2 : 1, mipHeight > 1 ? mipHeight / 2 : 1, 1 };
blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.dstSubresource.mipLevel = i;
blit.dstSubresource.baseArrayLayer = 0;
blit.dstSubresource.layerCount = 1;

接下來,我們指定將在blit操作中使用的區域。源mip級別爲i - 1,目標mip級別爲i, srcOffsets數組的兩個元素決定了數據將從哪個3D區域進行blit。dstOffsets確定數據將被傳送到的區域,當每個mip級別的大小是前一個級別的一半時,dstOffsets[1]的X和Y維度除以2,當2D圖像的深度爲1srcOffsets[1]和dstOffsets[1]的Z維數必須爲1。

vkCmdBlitImage(commandBuffer,
    image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
    image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
    1, &blit,
    VK_FILTER_LINEAR);

現在,我們記錄blit命令。注意,textureImage同時用於srcImage和dstImage參數。這是因爲我們在同一幅圖像的不同層次之間穿梭。源mip級別剛剛轉換爲VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,目標級別仍然位於createTextureImage中的VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL中。

最後一個參數允許我們指定要在blit中使用的VkFilter。我們在這裏有相同的過濾選項,當我們做VkSampler。我們使用VK_FILTER_LINEAR來啓用插值。

barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;

vkCmdPipelineBarrier(commandBuffer,
    VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0,
    0, nullptr,
    0, nullptr,
    1, &barrier);

這個屏障將mip級別i - 1轉換爲VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL。此轉換將等待當前blit命令完成。所有采樣操作都將等待這個轉換完成。

    ...
    if (mipWidth > 1) mipWidth /= 2;
    if (mipHeight > 1) mipHeight /= 2;
}

在循環的末尾,我們將當前mip維數除以2。我們在除法之前檢查每個維度,以確保維度永遠不會變爲0。這將處理圖像不是正方形的情況,因爲mip維度中的一個將比另一個維度早達到1。當這種情況發生時,所有剩餘級別的維度都應該保持爲1。

    barrier.subresourceRange.baseMipLevel = mipLevels - 1;
    barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
    barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
    barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
    barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;

    vkCmdPipelineBarrier(commandBuffer,
        VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0,
        0, nullptr,
        0, nullptr,
        1, &barrier);

    endSingleTimeCommands(commandBuffer);
}

在結束命令緩衝區之前,我們再插入一個管道屏障。這個屏障將最後一個mip級別從VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL轉換到VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL。這不是由循環處理的,因爲最後一個mip級別永遠不會被釋放。

最後,在createTextureImage中添加對generateMipmaps 的調用:

transitionImageLayout(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, mipLevels);
    copyBufferToImage(stagingBuffer, textureImage, static_cast<uint32_t>(texWidth), static_cast<uint32_t>(texHeight));
//transitioned to VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL while generating mipmaps
...
generateMipmaps(textureImage, texWidth, texHeight, mipLevels);

我們的紋理圖像的mipmaps現在完全被填滿了。

三、線性濾波的支持

使用像vkCmdBlitImage這樣的內置函數來生成所有mip級別是非常方便的,但不幸的是,它不能保證在所有平臺上都受支持。它需要我們用來支持線性過濾的紋理圖像格式,可以使用vkGetPhysicalDeviceFormatProperties函數來檢查。我們將爲此向generateMipmaps函數添加一個檢查。

首先添加一個指定圖像格式的附加參數:

void createTextureImage() {
    ...
    generateMipmaps(textureImage, VK_FORMAT_R8G8B8A8_UNORM, texWidth, texHeight, mipLevels);
}

void generateMipmaps(VkImage image, VkFormat imageFormat, int32_t texWidth, int32_t texHeight, uint32_t mipLevels) {
    ...
}

在generateMipmaps函數中,使用vkGetPhysicalDeviceFormatProperties請求紋理圖像格式的屬性:

void generateMipmaps(VkImage image, VkFormat imageFormat, int32_t texWidth, int32_t texHeight, uint32_t mipLevels) {

    // Check if image format supports linear blitting
    VkFormatProperties formatProperties;
    vkGetPhysicalDeviceFormatProperties(physicalDevice, imageFormat, &formatProperties);

    ...

VkFormatProperties結構有三個字段,分別爲linearTilingFeatures、optimalTilingFeatures和bufferFeatures,每個字段根據使用格式的方式描述如何使用格式。我們採用最優平鋪格式創建一個紋理圖像,所以我們需要檢查優化功能。線性過濾特性的支持可以通過vk_format_feature_sampled_image_filter_linear進行檢查:

if (!(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT)) {
    throw std::runtime_error("texture image format does not support linear blitting!");
}

在這種情況下有兩種選擇,可以實現一個函數,該函數搜索支持線性bl的常見紋理圖像格式,或者使用雷士stb_image_resize的庫在軟件中實現mipmap生成。然後,可以像加載原始圖像一樣將每個mip級別加載到圖像中。

應該注意的是,在實際操作中,在運行時生成mipmap級別並不常見。通常它們是預先生成的,並與基本層一起存儲在紋理文件中,以提高加載速度。在軟件中實現大小調整和從文件中加載多個級別留給讀者作爲練習。

四、採樣器

當VkImage持有mipmap數據時,VkSampler控制如何在呈現時讀取該數據。Vulkan允許我們指定minLod、maxLod、mipLodBias和mipmapMode(“Lod”表示“Level of Detail”)。採樣紋理時,採樣器根據如下僞代碼選擇一個mip級別:

lod = getLodLevelFromScreenSize(); //smaller when the object is close, may be negative
lod = clamp(lod + mipLodBias, minLod, maxLod);

level = clamp(floor(lod), 0, texture.mipLevels - 1);  //clamped to the number of mip levels in the texture

if (mipmapMode == VK_SAMPLER_MIPMAP_MODE_NEAREST) {
    color = sample(level);
} else {
    color = blend(sample(level), sample(level + 1));
}

如果samplerInfo.mipmapMode的值是VK_SAMPLER_MIPMAP_MODE_NEAREST, lod選擇要採樣的mip級別。如果mipmap模式是VK_SAMPLER_MIPMAP_MODE_LINEAR,則使用lod選擇要採樣的兩個mip級別。這些mip級別是抽樣的,結果是線性混合。

採樣操作也被lod影響:

if (lod <= 0) {
    color = readTexture(uv, magFilter);
} else {
    color = readTexture(uv, minFilter);
}

如果對象靠近相機,則使用magFilter作爲過濾器。如果對象距離攝像機較遠,則使用minFilter。正常情況下,lod是非負的,關閉相機時只有0。mipLodBias讓我們迫使Vulkan使用比正常情況下更低的lod和level。

要查看本章的結果,我們需要爲textureSampler選擇值。我們已經將minFilter和magFilter設置爲使用VK_FILTER_LINEAR。我們只需要爲minLod、maxLod、mipLodBias和mipmapMode選擇值。

void createTextureSampler() {
    ...
    samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
    samplerInfo.minLod = 0; // Optional
    samplerInfo.maxLod = static_cast<float>(mipLevels);
    samplerInfo.mipLodBias = 0; // Optional
    ...
}

爲了允許使用全部mip級別,我們將minLod設置爲0,並將maxLod設置爲mip級別的數量。我們沒有理由更改lod值,所以我們將mipLodBias設置爲0。

現在運行你的程序,因爲我們的場景是很簡單,沒有太大的差別。如果你仔細觀察,會發現有細微的差別。
在這裏插入圖片描述
您可以嘗試使用採樣器設置,看看它們如何影響mipmapping。例如,通過改變minLod,您可以強制採樣器不使用最低的mip級別:

samplerInfo.minLod = static_cast<float>(mipLevels / 2);

這些設置將生成如下圖像:
在這裏插入圖片描述
當物體離相機較遠時,就會使用較高的mip級別。

附:源碼

//28_mipmapping.cpp
#define GLFW_INCLUDE_VULKAN
#define GLM_FORCE_RADIANS
#include <GLFW/glfw3.h>

#define STB_IMAGE_IMPLEMENTATION
#include <stb/stb_image.h>

#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtx/hash.hpp>

#define TINYOBJLOADER_IMPLEMENTATION
#include <tiny/tiny_obj_loader.h>

#include <fstream>
#include <iostream>
#include <stdexcept>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <set>
#include <array>
#include <algorithm>
#include <chrono>
#include <unordered_map>

const int WIDTH = 800;
const int HEIGHT = 600;
const int MAX_FRAMES_IN_FLIGHT = 2;

const std::vector<const char*> validationLayers = {
	"VK_LAYER_KHRONOS_validation"
};

const std::vector<const char*> deviceExtensions = {
	VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endif

VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
	auto func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
	if (func != nullptr) {
		return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
	}
	else {
		return VK_ERROR_EXTENSION_NOT_PRESENT;
	}
}

void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
	auto func = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
	if (func != nullptr) {
		func(instance, debugMessenger, pAllocator);
	}
}

struct QueueFamilyIndices {
	uint32_t graphicsFamily = -1;
	uint32_t presentFamily = -1;

	bool isComplete() {
		return graphicsFamily >= 0 && presentFamily >= 0;
	}
};

struct SwapChainSupportDetails {
	VkSurfaceCapabilitiesKHR capabilities;
	std::vector<VkSurfaceFormatKHR> formats;
	std::vector<VkPresentModeKHR> presentModes;
};

struct Vertex {
	glm::vec3  pos;
	glm::vec3 color;
	glm::vec2 texCoord;

	//綁定描述
	static VkVertexInputBindingDescription getBindingDescription() {
		VkVertexInputBindingDescription bindingDescription = {};
		bindingDescription.binding = 0;
		bindingDescription.stride = sizeof(Vertex);
		bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

		return bindingDescription;
	}

	//屬性描述
	static std::array<VkVertexInputAttributeDescription, 3> getAttributeDescriptions() {
		std::array<VkVertexInputAttributeDescription, 3> attributeDescriptions = {};

		attributeDescriptions[0].binding = 0;
		attributeDescriptions[0].location = 0;
		attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT;
		attributeDescriptions[0].offset = offsetof(Vertex, pos);

		attributeDescriptions[1].binding = 0;
		attributeDescriptions[1].location = 1;
		attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
		attributeDescriptions[1].offset = offsetof(Vertex, color);

		attributeDescriptions[2].binding = 0;
		attributeDescriptions[2].location = 2;
		attributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT;
		attributeDescriptions[2].offset = offsetof(Vertex, texCoord);

		return attributeDescriptions;
	}


	bool operator==(const Vertex& other) const {
		return pos == other.pos && color == other.color && texCoord == other.texCoord;
	}
};

namespace std {
	template<> struct hash<Vertex> {
		size_t operator()(Vertex const& vertex) const {
			return ((hash<glm::vec3>()(vertex.pos) ^ (hash<glm::vec3>()(vertex.color) << 1)) >> 1) ^ (hash<glm::vec2>()(vertex.texCoord) << 1);
		}
	};
}

struct UniformBufferObject {
	glm::mat4 model;
	glm::mat4 view;
	glm::mat4 proj;
};

std::vector<Vertex> vertices;
std::vector<uint32_t> indices;
VkBuffer vertexBuffer;
VkDeviceMemory vertexBufferMemory;


class HelloTriangleApplication {
public:
	void run() {
		initWindow();
		initVulkan();
		mainLoop();
		cleanup();
	}

private:
	GLFWwindow* window;

	VkInstance instance;
	VkDebugUtilsMessengerEXT debugMessenger;
	VkSurfaceKHR surface;

	VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
	VkDevice device;

	VkQueue graphicsQueue;
	VkQueue presentQueue;

	VkSwapchainKHR swapChain;
	std::vector<VkImage> swapChainImages;
	VkFormat swapChainImageFormat;
	VkExtent2D swapChainExtent;

	std::vector<VkImageView> swapChainImageViews;

	VkRenderPass renderPass;
	VkDescriptorSetLayout descriptorSetLayout;
	VkPipelineLayout pipelineLayout;
	VkPipeline graphicsPipeline;
	std::vector<VkFramebuffer> swapChainFramebuffers;

	VkCommandPool commandPool;
	std::vector<VkCommandBuffer> commandBuffers;

	VkSemaphore imageAvailableSemaphore;
	VkSemaphore renderFinishedSemaphore;

	std::vector<VkSemaphore> imageAvailableSemaphores;
	std::vector<VkSemaphore> renderFinishedSemaphores;
	std::vector<VkFence> inFlightFences;
	std::vector<VkFence> imagesInFlight;
	size_t currentFrame = 0;

	VkDeviceMemory textureImageMemory;
	VkImageView textureImageView;//保存紋理圖像
	VkSampler textureSampler;//創建採樣器

	//VkBuffer vertexBuffer;
	//VkDeviceMemory vertexBufferMemory;
	VkBuffer indexBuffer;
	VkDeviceMemory indexBufferMemory;
	VkBuffer uniformBuffer;
	VkDeviceMemory uniformBufferMemory;

	VkDescriptorPool descriptorPool;
	VkDescriptorSet descriptorSet;

	VkBuffer stagingBuffer;
	VkDeviceMemory stagingBufferMemory;

	VkImage depthImage;
	VkDeviceMemory depthImageMemory;
	VkImageView depthImageView;

	uint32_t mipLevels;//Mip鏈
	VkImage textureImage;

	void initWindow() {
		glfwInit();

		glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
		//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);

		window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan_Day27_mipmapping", nullptr, nullptr);

		glfwSetWindowUserPointer(window, this);
		glfwSetWindowSizeCallback(window, HelloTriangleApplication::onWindowResized);
	}

	void initVulkan() {
		createInstance();
		setupDebugMessenger();
		createSurface();
		pickPhysicalDevice();
		createLogicalDevice();
		createSwapChain();
		createImageViews();
		createRenderPass();
		createDescriptorSetLayout();
		createGraphicsPipeline();
		createCommandPool();
		createDepthResources();
		createFramebuffers();
		createTextureImage();
		createTextureImageView();
		createTextureSampler();
		loadModel();
		createVertexBuffer();
		createIndexBuffer();
		createUniformBuffer();
		createDescriptorPool();
		createDescriptorSet();
		createCommandBuffers();
		createSemaphores();
	}

	void mainLoop() {
		while (!glfwWindowShouldClose(window)) {
			glfwPollEvents();
			updateUniformBuffer();
			drawFrame();
		}

		vkDeviceWaitIdle(device);
	}

	void cleanup() {
		cleanupSwapChain();
		vkDestroySampler(device, textureSampler, nullptr);
		vkDestroyImageView(device, textureImageView, nullptr);
		vkDestroyImage(device, textureImage, nullptr);
		vkFreeMemory(device, textureImageMemory, nullptr);
		vkDestroyDescriptorPool(device, descriptorPool, nullptr);
		vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
		vkDestroyBuffer(device, uniformBuffer, nullptr);
		vkFreeMemory(device, uniformBufferMemory, nullptr);
		vkDestroyBuffer(device, indexBuffer, nullptr);
		vkFreeMemory(device, indexBufferMemory, nullptr);
		vkDestroyBuffer(device, vertexBuffer, nullptr);
		vkFreeMemory(device, vertexBufferMemory, nullptr);

		for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
			vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr);
			vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr);
			vkDestroyFence(device, inFlightFences[i], nullptr);
		}

		vkDestroyCommandPool(device, commandPool, nullptr);

		vkDestroyDevice(device, nullptr);

		if (enableValidationLayers) {
			DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
		}

		vkDestroySurfaceKHR(instance, surface, nullptr);
		vkDestroyInstance(instance, nullptr);

		glfwDestroyWindow(window);

		glfwTerminate();
	}

	void updateUniformBuffer() {
		static auto startTime = std::chrono::high_resolution_clock::now();
		auto currentTime = std::chrono::high_resolution_clock::now();
		float time = std::chrono::duration_cast<std::chrono::milliseconds>(currentTime - startTime).count() / 1000.0f;

		UniformBufferObject ubo = {};
		//ubo.model = glm::rotate(glm::mat4(1.0f), time * glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f));
		ubo.model = glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f));

		ubo.view = glm::lookAt(glm::vec3(-0.5f, -2.0f, 2.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f));

		ubo.proj = glm::perspective(glm::radians(45.0f), swapChainExtent.width / (float)swapChainExtent.height, 0.1f, 10.0f);

		ubo.proj[1][1] *= -1;

		void* data;
		vkMapMemory(device, uniformBufferMemory, 0, sizeof(ubo), 0, &data);
		memcpy(data, &ubo, sizeof(ubo));
		vkUnmapMemory(device, uniformBufferMemory);
	}

	void drawFrame() {
		vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX);

		uint32_t imageIndex;
		VkResult result = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);

		if (result == VK_ERROR_OUT_OF_DATE_KHR) {
			recreateSwapChain();
			return;
		}
		else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
			throw std::runtime_error("failed to acquire swap chain image!");
		}

		if (imagesInFlight[imageIndex] != VK_NULL_HANDLE) {
			vkWaitForFences(device, 1, &imagesInFlight[imageIndex], VK_TRUE, UINT64_MAX);
		}
		imagesInFlight[imageIndex] = inFlightFences[currentFrame];

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

		VkSemaphore waitSemaphores[] = { imageAvailableSemaphores[currentFrame] };
		VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
		submitInfo.waitSemaphoreCount = 1;
		submitInfo.pWaitSemaphores = waitSemaphores;
		submitInfo.pWaitDstStageMask = waitStages;

		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffers[imageIndex];

		VkSemaphore signalSemaphores[] = { renderFinishedSemaphores[currentFrame] };
		submitInfo.signalSemaphoreCount = 1;
		submitInfo.pSignalSemaphores = signalSemaphores;

		vkResetFences(device, 1, &inFlightFences[currentFrame]);

		if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]) != VK_SUCCESS) {
			throw std::runtime_error("failed to submit draw command buffer!");
		}

		VkPresentInfoKHR presentInfo = {};
		presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;

		presentInfo.waitSemaphoreCount = 1;
		presentInfo.pWaitSemaphores = signalSemaphores;

		VkSwapchainKHR swapChains[] = { swapChain };
		presentInfo.swapchainCount = 1;
		presentInfo.pSwapchains = swapChains;

		presentInfo.pImageIndices = &imageIndex;

		result = vkQueuePresentKHR(presentQueue, &presentInfo);

		if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
			recreateSwapChain();
		}
		else if (result != VK_SUCCESS) {
			throw std::runtime_error("failed to present swap chain image!");
		}

		currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
	}

	static void onWindowResized(GLFWwindow* window, int width, int height) {
		if (width == 0 || height == 0) return;

		HelloTriangleApplication* app = reinterpret_cast<HelloTriangleApplication*>(glfwGetWindowUserPointer(window));
		app->recreateSwapChain();
	}

	void cleanupSwapChain() {
		vkDestroyImageView(device, depthImageView, nullptr);
		vkDestroyImage(device, depthImage, nullptr);
		vkFreeMemory(device, depthImageMemory, nullptr);

		for (auto framebuffer : swapChainFramebuffers) {
			vkDestroyFramebuffer(device, framebuffer, nullptr);
		}

		vkFreeCommandBuffers(device, commandPool, static_cast<uint32_t>(commandBuffers.size()), commandBuffers.data());

		vkDestroyPipeline(device, graphicsPipeline, nullptr);
		vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
		vkDestroyRenderPass(device, renderPass, nullptr);

		for (auto imageView : swapChainImageViews) {
			vkDestroyImageView(device, imageView, nullptr);
		}

		vkDestroySwapchainKHR(device, swapChain, nullptr);
	}

	void recreateSwapChain() {
		int width = 0, height = 0;
		glfwGetFramebufferSize(window, &width, &height);
		while (width == 0 || height == 0) {
			glfwGetFramebufferSize(window, &width, &height);
			glfwWaitEvents();
		}

		vkDeviceWaitIdle(device);

		cleanupSwapChain();

		createSwapChain();
		createImageViews();
		createRenderPass();
		createGraphicsPipeline();
		createDepthResources();
		createFramebuffers();
		createCommandBuffers();
	}

	void createInstance() {
		if (enableValidationLayers && !checkValidationLayerSupport()) {
			throw std::runtime_error("validation layers requested, but not available!");
		}

		VkApplicationInfo appInfo = {};
		appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
		appInfo.pApplicationName = "Hello Triangle";
		appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
		appInfo.pEngineName = "No Engine";
		appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
		appInfo.apiVersion = VK_API_VERSION_1_0;

		VkInstanceCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
		createInfo.pApplicationInfo = &appInfo;

		auto extensions = getRequiredExtensions();
		createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
		createInfo.ppEnabledExtensionNames = extensions.data();

		VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo;
		if (enableValidationLayers) {
			createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
			createInfo.ppEnabledLayerNames = validationLayers.data();

			populateDebugMessengerCreateInfo(debugCreateInfo);
			createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*)&debugCreateInfo;
		}
		else {
			createInfo.enabledLayerCount = 0;

			createInfo.pNext = nullptr;
		}

		if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
			throw std::runtime_error("failed to create instance!");
		}
	}

	void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
		createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
		createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
		createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
		createInfo.pfnUserCallback = debugCallback;
	}

	void setupDebugMessenger() {
		if (!enableValidationLayers) return;

		VkDebugUtilsMessengerCreateInfoEXT createInfo;
		populateDebugMessengerCreateInfo(createInfo);

		if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
			throw std::runtime_error("failed to set up debug messenger!");
		}
	}

	void createImageViews() {
		swapChainImageViews.resize(swapChainImages.size());
		for (size_t i = 0; i < swapChainImages.size(); i++) {
			swapChainImageViews[i] = createImageView(swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT,1);
		}
	}

	VkImageView createImageView(VkImage image, VkFormat format, VkImageAspectFlags aspectFlags, uint32_t mipLevels) {
		VkImageViewCreateInfo viewInfo = {};
		viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
		viewInfo.image = image;
		viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
		viewInfo.format = format;
		viewInfo.subresourceRange.aspectMask = aspectFlags;
		viewInfo.subresourceRange.baseMipLevel = 0;
		viewInfo.subresourceRange.levelCount = mipLevels;
		viewInfo.subresourceRange.baseArrayLayer = 0;
		viewInfo.subresourceRange.layerCount = 1;

		VkImageView imageView;
		if (vkCreateImageView(device, &viewInfo, nullptr, &imageView) != VK_SUCCESS) {
			throw std::runtime_error("failed to create texture image view!");
		}

		return imageView;
	}

	void createSurface() {
		if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) {
			throw std::runtime_error("failed to create window surface!");
		}
	}

	void pickPhysicalDevice() {
		uint32_t deviceCount = 0;
		vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

		if (deviceCount == 0) {
			throw std::runtime_error("failed to find GPUs with Vulkan support!");
		}

		std::vector<VkPhysicalDevice> devices(deviceCount);
		vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());

		for (const auto& device : devices) {
			if (isDeviceSuitable(device)) {
				physicalDevice = device;
				break;
			}
		}

		if (physicalDevice == VK_NULL_HANDLE) {
			throw std::runtime_error("failed to find a suitable GPU!");
		}
	}

	void createLogicalDevice() {
		QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
		std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
		std::set<uint32_t> uniqueQueueFamilies = { indices.graphicsFamily, indices.presentFamily };
		float queuePriority = 1.0f;
		for (int queueFamily : uniqueQueueFamilies) {
			VkDeviceQueueCreateInfo queueCreateInfo = {};
			queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
			queueCreateInfo.queueFamilyIndex = queueFamily;
			queueCreateInfo.queueCount = 1;
			queueCreateInfo.pQueuePriorities = &queuePriority;
			queueCreateInfos.push_back(queueCreateInfo);
		}

		VkPhysicalDeviceFeatures deviceFeatures = {};
		deviceFeatures.samplerAnisotropy = VK_TRUE;

		VkDeviceCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

		createInfo.pQueueCreateInfos = queueCreateInfos.data();
		createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());

		createInfo.pEnabledFeatures = &deviceFeatures;

		createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
		createInfo.ppEnabledExtensionNames = deviceExtensions.data();

		if (enableValidationLayers) {
			createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
			createInfo.ppEnabledLayerNames = validationLayers.data();
		}
		else {
			createInfo.enabledLayerCount = 0;
		}

		if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
			throw std::runtime_error("failed to create logical device!");
		}

		vkGetDeviceQueue(device, indices.graphicsFamily, 0, &graphicsQueue);
		vkGetDeviceQueue(device, indices.presentFamily, 0, &presentQueue);
	}

	void createSwapChain() {
		SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);

		VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
		VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
		VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);

		uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
		if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
			imageCount = swapChainSupport.capabilities.maxImageCount;
		}

		VkSwapchainCreateInfoKHR createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
		createInfo.surface = surface;

		createInfo.minImageCount = imageCount;
		createInfo.imageFormat = surfaceFormat.format;
		createInfo.imageColorSpace = surfaceFormat.colorSpace;
		createInfo.imageExtent = extent;
		createInfo.imageArrayLayers = 1;
		createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

		QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
		uint32_t queueFamilyIndices[] = { (uint32_t)indices.graphicsFamily, (uint32_t)indices.presentFamily };

		if (indices.graphicsFamily != indices.presentFamily) {
			createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
			createInfo.queueFamilyIndexCount = 2;
			createInfo.pQueueFamilyIndices = queueFamilyIndices;
		}
		else {
			createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
			createInfo.queueFamilyIndexCount = 0; // Optional
			createInfo.pQueueFamilyIndices = nullptr; // Optional
		}

		createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
		createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
		createInfo.presentMode = presentMode;
		createInfo.clipped = VK_TRUE;
		createInfo.oldSwapchain = VK_NULL_HANDLE;

		if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
			throw std::runtime_error("failed to create swap chain!");
		}

		vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
		swapChainImages.resize(imageCount);
		vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());
		swapChainImageFormat = surfaceFormat.format;
		swapChainExtent = extent;
	}

	bool isDeviceSuitable(VkPhysicalDevice device) {
		QueueFamilyIndices indices = findQueueFamilies(device);
		bool extensionsSupported = checkDeviceExtensionSupport(device);

		bool swapChainAdequate = false;
		if (extensionsSupported) {
			SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
			swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
		}
		//各向異性濾波器
		VkPhysicalDeviceFeatures supportedFeatures;
		vkGetPhysicalDeviceFeatures(device, &supportedFeatures);
		return indices.isComplete() && extensionsSupported && swapChainAdequate&& supportedFeatures.samplerAnisotropy;
	}

	void createRenderPass() {
		VkAttachmentDescription colorAttachment = {};
		colorAttachment.format = swapChainImageFormat;
		colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
		colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
		colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
		colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
		colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
		colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
		colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

		VkAttachmentDescription depthAttachment = {};
		depthAttachment.format = findDepthFormat();
		depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
		depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
		depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
		depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
		depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
		depthAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
		depthAttachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

		VkAttachmentReference colorAttachmentRef = {};
		colorAttachmentRef.attachment = 0;
		colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

		VkAttachmentReference depthAttachmentRef = {};
		depthAttachmentRef.attachment = 1;
		depthAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

		VkSubpassDescription subpass = {};
		subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
		subpass.colorAttachmentCount = 1;
		subpass.pColorAttachments = &colorAttachmentRef;
		subpass.pDepthStencilAttachment = &depthAttachmentRef;

		std::array<VkAttachmentDescription, 2> attachments = { colorAttachment, depthAttachment };
		VkRenderPassCreateInfo renderPassInfo = {};
		renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
		renderPassInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
		renderPassInfo.pAttachments = attachments.data();
		renderPassInfo.subpassCount = 1;
		renderPassInfo.pSubpasses = &subpass;
		VkSubpassDependency dependency = {};
		dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
		dependency.dstSubpass = 0;
		dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
		dependency.srcAccessMask = 0;
		dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
		dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
		renderPassInfo.dependencyCount = 1;
		renderPassInfo.pDependencies = &dependency;

		if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
			throw std::runtime_error("failed to create render pass!");
		}
	}

	VkShaderModule createShaderModule(const std::vector<char>& code) {
		VkShaderModuleCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
		createInfo.codeSize = code.size();

		createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());

		VkShaderModule shaderModule;
		if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
			throw std::runtime_error("failed to create shader module!");
		}
		return shaderModule;
	}

	static std::vector<char> readFile(const std::string& filename) {
		std::ifstream file(filename, std::ios::ate | std::ios::binary);

		if (!file.is_open()) {
			throw std::runtime_error("failed to open file!");
		}
		size_t fileSize = (size_t)file.tellg();
		std::vector<char> buffer(fileSize);
		file.seekg(0);
		file.read(buffer.data(), fileSize);
		file.close();
		return buffer;
	}

	void createSemaphores() {
		imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
		renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
		inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);
		imagesInFlight.resize(swapChainImages.size(), VK_NULL_HANDLE);

		VkSemaphoreCreateInfo semaphoreInfo = {};
		semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;

		VkFenceCreateInfo fenceInfo = {};
		fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
		fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;

		for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
			if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS ||
				vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS ||
				vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create synchronization objects for a frame!");
			}
		}
	}

	void createCommandBuffers() {
		commandBuffers.resize(swapChainFramebuffers.size());
		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.commandPool = commandPool;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandBufferCount = (uint32_t)commandBuffers.size();

		if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate command buffers!");
		}

		for (size_t i = 0; i < commandBuffers.size(); i++) {
			VkCommandBufferBeginInfo beginInfo = {};
			beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
			beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
			beginInfo.pInheritanceInfo = nullptr; // Optional

			vkBeginCommandBuffer(commandBuffers[i], &beginInfo);

			VkRenderPassBeginInfo renderPassInfo = {};
			renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
			renderPassInfo.renderPass = renderPass;
			renderPassInfo.framebuffer = swapChainFramebuffers[i];

			renderPassInfo.renderArea.offset = { 0, 0 };
			renderPassInfo.renderArea.extent = swapChainExtent;

			//因爲我們現在有多個帶 VK_ATTACHMENT_LOAD_OP_CLEAR 的附件,我們還需要指定多個清除值
			std::array<VkClearValue, 2> clearValues = {};
			clearValues[0].color = { 0.1f, 0.1f, 0.3f, 0.5f };
			clearValues[1].depthStencil = { 1.0f, 0 };

			renderPassInfo.clearValueCount = static_cast<uint32_t>(clearValues.size());
			renderPassInfo.pClearValues = clearValues.data();

			vkCmdBeginRenderPass(commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);

			//渲染期間綁定緩衝區
			vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

			VkBuffer vertexBuffers[] = { vertexBuffer };
			VkDeviceSize offsets[] = { 0 };
			//綁定頂點緩衝區
			vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets);

			vkCmdBindIndexBuffer(commandBuffers[i], indexBuffer, 0, VK_INDEX_TYPE_UINT32);

			vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);

			vkCmdDrawIndexed(commandBuffers[i], static_cast<uint32_t>(indices.size()), 1, 0, 0, 0);

			//vkCmdDraw(commandBuffers[i], static_cast<uint32_t>(vertices.size()), 1, 0, 0);

			vkCmdEndRenderPass(commandBuffers[i]);

			if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to record command buffer!");
			}
		}

	}

	void createCommandPool() {
		QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);

		VkCommandPoolCreateInfo poolInfo = {};
		poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
		poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily;
		poolInfo.flags = 0; // Optional

		if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
			throw std::runtime_error("failed to create command pool!");
		}
	}

	VkFormat findDepthFormat() {
		return findSupportedFormat(
			{ VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT },
			VK_IMAGE_TILING_OPTIMAL,
			VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT
		);
	}

	VkFormat findSupportedFormat(const std::vector<VkFormat>& candidates, VkImageTiling tiling, VkFormatFeatureFlags features) {
		for (VkFormat format : candidates) {
			VkFormatProperties props;
			vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props);

			if (tiling == VK_IMAGE_TILING_LINEAR && (props.linearTilingFeatures & features) == features) {
				return format;
			}
			else if (tiling == VK_IMAGE_TILING_OPTIMAL && (props.optimalTilingFeatures & features) == features) {
				return format;
			}
		}

		throw std::runtime_error("failed to find supported format!");
	}

	bool hasStencilComponent(VkFormat format) {
		return format == VK_FORMAT_D32_SFLOAT_S8_UINT || format == VK_FORMAT_D24_UNORM_S8_UINT;
	}

	void createDepthResources() {
		VkFormat depthFormat = findDepthFormat();

		createImage(swapChainExtent.width, swapChainExtent.height,1, depthFormat, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, depthImage, depthImageMemory);
		depthImageView = createImageView(depthImage, depthFormat, VK_IMAGE_ASPECT_DEPTH_BIT, 1);
	}

	void createTextureSampler() {
		VkSamplerCreateInfo samplerInfo = {};
		samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
		//指定紋素放大和縮小內插值方式
		samplerInfo.magFilter = VK_FILTER_LINEAR;
		samplerInfo.minFilter = VK_FILTER_LINEAR;
		//每個軸向使用的尋址模式
		samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
		samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
		samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
		//各向異性過濾器
		samplerInfo.anisotropyEnable = VK_TRUE;
		samplerInfo.maxAnisotropy = 16;
		//samplerInfo.anisotropyEnable = VK_FALSE;
		//samplerInfo.maxAnisotropy = 1;
		//採樣範圍超過圖像時候返回的顏色
		samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
		//指定使用的座標系統,用於訪問圖像的紋素
		samplerInfo.unnormalizedCoordinates = VK_FALSE;
		//開啓比較功能,那麼紋素首先和值進行比較,並且比較後的值用於過濾操作
		samplerInfo.compareEnable = VK_FALSE;
		samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
		samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
		samplerInfo.mipLodBias = 0.0f;
		//samplerInfo.minLod = 0;
		samplerInfo.minLod = static_cast<float>(mipLevels / 2);
		//samplerInfo.maxLod = 0;
		samplerInfo.maxLod = static_cast<float>(mipLevels);

		//創建採樣器
		if (vkCreateSampler(device, &samplerInfo, nullptr, &textureSampler) != VK_SUCCESS) {
			throw std::runtime_error("failed to create texture sampler!");
		}
	}

	void createTextureImageView() {
		textureImageView = createImageView(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_ASPECT_COLOR_BIT, mipLevels);
	}

	void generateMipmaps(VkImage image, VkFormat imageFormat, int32_t texWidth, int32_t texHeight, uint32_t mipLevels) {
		// Check if image format supports linear blitting
		VkFormatProperties formatProperties;
		vkGetPhysicalDeviceFormatProperties(physicalDevice, imageFormat, &formatProperties);

		if (!(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT)) {
			throw std::runtime_error("texture image format does not support linear blitting!");
		}

		VkCommandBuffer commandBuffer = beginSingleTimeCommands();

		VkImageMemoryBarrier barrier = {};
		barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
		barrier.image = image;
		barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
		barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
		barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
		barrier.subresourceRange.baseArrayLayer = 0;
		barrier.subresourceRange.layerCount = 1;
		barrier.subresourceRange.levelCount = 1;

		int32_t mipWidth = texWidth;
		int32_t mipHeight = texHeight;

		for (uint32_t i = 1; i < mipLevels; i++) {
			barrier.subresourceRange.baseMipLevel = i - 1;
			barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
			barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
			barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
			barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;

			vkCmdPipelineBarrier(commandBuffer,
				VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0,
				0, nullptr,
				0, nullptr,
				1, &barrier);

			VkImageBlit blit = {};
			blit.srcOffsets[0] = { 0, 0, 0 };
			blit.srcOffsets[1] = { mipWidth, mipHeight, 1 };
			blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
			blit.srcSubresource.mipLevel = i - 1;
			blit.srcSubresource.baseArrayLayer = 0;
			blit.srcSubresource.layerCount = 1;
			blit.dstOffsets[0] = { 0, 0, 0 };
			blit.dstOffsets[1] = { mipWidth > 1 ? mipWidth / 2 : 1, mipHeight > 1 ? mipHeight / 2 : 1, 1 };
			blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
			blit.dstSubresource.mipLevel = i;
			blit.dstSubresource.baseArrayLayer = 0;
			blit.dstSubresource.layerCount = 1;

			vkCmdBlitImage(commandBuffer,
				image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
				image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
				1, &blit,
				VK_FILTER_LINEAR);

			barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
			barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
			barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
			barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;

			vkCmdPipelineBarrier(commandBuffer,
				VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0,
				0, nullptr,
				0, nullptr,
				1, &barrier);

			if (mipWidth > 1) mipWidth /= 2;
			if (mipHeight > 1) mipHeight /= 2;
		}

		barrier.subresourceRange.baseMipLevel = mipLevels - 1;
		barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
		barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
		barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
		barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;

		vkCmdPipelineBarrier(commandBuffer,
			VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0,
			0, nullptr,
			0, nullptr,
			1, &barrier);

		endSingleTimeCommands(commandBuffer);
	}

	void createTextureImage() {
		int texWidth, texHeight, texChannels;
		stbi_uc* pixels = stbi_load("chalet.jpg", &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
		VkDeviceSize imageSize = texWidth * texHeight * 4;

		mipLevels = static_cast<uint32_t>(std::floor(std::log2(std::max(texWidth, texHeight)))) + 1;

		if (!pixels) {
			throw std::runtime_error("failed to load texture image!");
		}

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;
		createBuffer(imageSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		void* data;
		vkMapMemory(device, stagingBufferMemory, 0, imageSize, 0, &data);
		memcpy(data, pixels, static_cast<size_t>(imageSize));
		vkUnmapMemory(device, stagingBufferMemory);

		stbi_image_free(pixels);

		createImage(texWidth, texHeight, mipLevels, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, textureImage, textureImageMemory);

		transitionImageLayout(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, mipLevels);
		copyBufferToImage(stagingBuffer, textureImage, static_cast<uint32_t>(texWidth), static_cast<uint32_t>(texHeight));

		//transitionImageLayout(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, mipLevels);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);

		//transitioned to VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL while generating mipmaps
		generateMipmaps(textureImage, VK_FORMAT_R8G8B8A8_UNORM, texWidth, texHeight, mipLevels);
	}

	void createImage(uint32_t width, uint32_t height, uint32_t mipLevels, VkFormat format, VkImageTiling tiling, VkImageUsageFlags usage, VkMemoryPropertyFlags properties, VkImage& image, VkDeviceMemory& imageMemory) {
		VkImageCreateInfo imageInfo = {};
		imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
		imageInfo.imageType = VK_IMAGE_TYPE_2D;
		imageInfo.extent.width = width;
		imageInfo.extent.height = height;
		imageInfo.extent.depth = 1;
		imageInfo.mipLevels = mipLevels;
		imageInfo.arrayLayers = 1;
		imageInfo.format = format;
		imageInfo.tiling = tiling;
		imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
		imageInfo.usage = usage;
		imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
		imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

		if (vkCreateImage(device, &imageInfo, nullptr, &image) != VK_SUCCESS) {
			throw std::runtime_error("failed to create image!");
		}

		VkMemoryRequirements memRequirements;
		vkGetImageMemoryRequirements(device, image, &memRequirements);

		VkMemoryAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
		allocInfo.allocationSize = memRequirements.size;
		allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);

		if (vkAllocateMemory(device, &allocInfo, nullptr, &imageMemory) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate image memory!");
		}

		vkBindImageMemory(device, image, imageMemory, 0);
	}

	void transitionImageLayout(VkImage image, VkFormat format, VkImageLayout oldLayout, VkImageLayout newLayout, uint32_t mipLevels) {
		VkCommandBuffer commandBuffer = beginSingleTimeCommands();

		VkImageMemoryBarrier barrier = {};
		barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
		barrier.oldLayout = oldLayout;
		barrier.newLayout = newLayout;
		barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
		barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
		barrier.image = image;
		//barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
		barrier.subresourceRange.baseMipLevel = 0;
		barrier.subresourceRange.levelCount = mipLevels;
		barrier.subresourceRange.baseArrayLayer = 0;
		barrier.subresourceRange.layerCount = 1;

		if (newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
			barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;

			if (hasStencilComponent(format)) {
				barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
			}
		}
		else {
			barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
		}

		VkPipelineStageFlags sourceStage;
		VkPipelineStageFlags destinationStage;

		if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
			barrier.srcAccessMask = 0;
			barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;

			sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
			destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
		}
		else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
			barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
			barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;

			sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
			destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
		}
		else if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
			barrier.srcAccessMask = 0;
			barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;

			sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
			destinationStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
		}
		else {
			throw std::invalid_argument("unsupported layout transition!");
		}


		vkCmdPipelineBarrier(
			commandBuffer,
			sourceStage, destinationStage,
			0,
			0, nullptr,
			0, nullptr,
			1, &barrier
		);

		endSingleTimeCommands(commandBuffer);
	}

	void copyBufferToImage(VkBuffer buffer, VkImage image, uint32_t width, uint32_t height) {
		VkCommandBuffer commandBuffer = beginSingleTimeCommands();

		VkBufferImageCopy region = {};
		region.bufferOffset = 0;
		region.bufferRowLength = 0;
		region.bufferImageHeight = 0;
		region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
		region.imageSubresource.mipLevel = 0;
		region.imageSubresource.baseArrayLayer = 0;
		region.imageSubresource.layerCount = 1;
		region.imageOffset = { 0, 0, 0 };
		region.imageExtent = {
			width,
			height,
			1
		};

		vkCmdCopyBufferToImage(commandBuffer, buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);

		endSingleTimeCommands(commandBuffer);
	}

	void loadModel() {
		tinyobj::attrib_t attrib;
		std::vector<tinyobj::shape_t> shapes;
		std::vector<tinyobj::material_t> materials;
		std::string warn, err;

		if (!tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, "chalet.obj")) {
			throw std::runtime_error(warn + err);
		}

		//for (const auto& shape : shapes) {
		//	for (const auto& index : shape.mesh.indices) {
		//		Vertex vertex = {};

		//		vertex.pos = {
		//            attrib.vertices[3 * index.vertex_index + 0],
		//            attrib.vertices[3 * index.vertex_index + 1],
		//            attrib.vertices[3 * index.vertex_index + 2]
		//		};

		//		vertex.texCoord = {
		//           attrib.texcoords[2 * index.texcoord_index + 0],
		//           1.0f - attrib.texcoords[2 * index.texcoord_index + 1]
		//		};

		//		vertex.color = { 1.0f, 1.0f, 1.0f };

		//		vertices.push_back(vertex);
		//		indices.push_back(indices.size());
		//	}
		//}

		std::unordered_map<Vertex, uint32_t> uniqueVertices = {};

		for (const auto& shape : shapes) {
			for (const auto& index : shape.mesh.indices) {
				Vertex vertex = {};

				vertex.pos = {
					attrib.vertices[3 * index.vertex_index + 0],
					attrib.vertices[3 * index.vertex_index + 1],
					attrib.vertices[3 * index.vertex_index + 2]
				};

				vertex.texCoord = {
					attrib.texcoords[2 * index.texcoord_index + 0],
					1.0f - attrib.texcoords[2 * index.texcoord_index + 1]
				};

				vertex.color = { 1.0f, 1.0f, 1.0f };

				if (uniqueVertices.count(vertex) == 0) {
					uniqueVertices[vertex] = static_cast<uint32_t>(vertices.size());
					vertices.push_back(vertex);
				}

				indices.push_back(uniqueVertices[vertex]);
			}
		}
	}

	// 創建頂點緩衝區
	void createVertexBuffer() {

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;

		VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		//*****填充頂點緩衝區*****
		void* data;
		//將緩衝區內存映射(mapping the buffer memory)到CPU可訪問的內存中完成
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
		//將頂點數據拷貝到映射內存中
		memcpy(data, vertices.data(), (size_t)bufferSize);
		//取消映射
		vkUnmapMemory(device, stagingBufferMemory);

		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory);

		copyBuffer(stagingBuffer, vertexBuffer, bufferSize);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}

	// 創建索引緩衝區
	void createIndexBuffer() {
		VkDeviceSize bufferSize = sizeof(indices[0]) * indices.size();

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		void* data;
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
		memcpy(data, indices.data(), (size_t)bufferSize);
		vkUnmapMemory(device, stagingBufferMemory);

		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory);

		copyBuffer(stagingBuffer, indexBuffer, bufferSize);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}

	void createUniformBuffer() {
		VkDeviceSize bufferSize = sizeof(UniformBufferObject);
		createBuffer(bufferSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, uniformBuffer, uniformBufferMemory);
	}

	void createDescriptorPool() {
		//組合圖像採樣器描述符
		std::array<VkDescriptorPoolSize, 2> poolSizes = {};
		poolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		poolSizes[0].descriptorCount = 1;
		poolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
		poolSizes[1].descriptorCount = 1;

		VkDescriptorPoolCreateInfo poolInfo = {};
		poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
		poolInfo.poolSizeCount = static_cast<uint32_t>(poolSizes.size());
		poolInfo.pPoolSizes = poolSizes.data();
		poolInfo.maxSets = 1;

		if (vkCreateDescriptorPool(device, &poolInfo, nullptr, &descriptorPool) != VK_SUCCESS) {
			throw std::runtime_error("failed to create descriptor pool!");
		}
	}

	void createDescriptorSet() {
		VkDescriptorSetLayout layouts[] = { descriptorSetLayout };
		VkDescriptorSetAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
		allocInfo.descriptorPool = descriptorPool;
		allocInfo.descriptorSetCount = 1;
		allocInfo.pSetLayouts = layouts;
		if (vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate descriptor set!");
		}

		VkDescriptorBufferInfo bufferInfo = {};
		bufferInfo.buffer = uniformBuffer;
		bufferInfo.offset = 0;
		bufferInfo.range = sizeof(UniformBufferObject);

		VkDescriptorImageInfo imageInfo = {};
		imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
		imageInfo.imageView = textureImageView;
		imageInfo.sampler = textureSampler;
		std::array<VkWriteDescriptorSet, 2> descriptorWrites = {};

		descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
		descriptorWrites[0].dstSet = descriptorSet;
		descriptorWrites[0].dstBinding = 0;
		descriptorWrites[0].dstArrayElement = 0;
		descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		descriptorWrites[0].descriptorCount = 1;
		descriptorWrites[0].pBufferInfo = &bufferInfo;

		descriptorWrites[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
		descriptorWrites[1].dstSet = descriptorSet;
		descriptorWrites[1].dstBinding = 1;
		descriptorWrites[1].dstArrayElement = 0;
		descriptorWrites[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
		descriptorWrites[1].descriptorCount = 1;
		descriptorWrites[1].pImageInfo = &imageInfo;

		vkUpdateDescriptorSets(device, static_cast<uint32_t>(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr);

	}

	//創建緩衝區
	void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer& buffer, VkDeviceMemory& bufferMemory) {

		//創建緩衝區
		VkBufferCreateInfo bufferInfo = {};
		bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
		bufferInfo.size = size;
		bufferInfo.usage = usage;
		bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
		if (vkCreateBuffer(device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
			throw std::runtime_error("failed to create buffer!");
		}

		//內存需求
		VkMemoryRequirements memRequirements;
		vkGetBufferMemoryRequirements(device, buffer, &memRequirements);

		//內存分配
		VkMemoryAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
		allocInfo.allocationSize = memRequirements.size;
		allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);

		if (vkAllocateMemory(device, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate buffer memory!");
		}
		//將內存關聯到緩衝區
		vkBindBufferMemory(device, buffer, bufferMemory, 0);
	}

	//用於從一個緩衝區拷貝數據到另一個緩衝區
	void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {
		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandPool = commandPool;
		allocInfo.commandBufferCount = 1;

		VkCommandBuffer commandBuffer;
		vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);

		VkCommandBufferBeginInfo beginInfo = {};
		beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
		beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;

		vkBeginCommandBuffer(commandBuffer, &beginInfo);

		VkBufferCopy copyRegion = {};
		copyRegion.size = size;
		vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, &copyRegion);

		vkEndCommandBuffer(commandBuffer);

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffer;

		vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
		vkQueueWaitIdle(graphicsQueue);

		vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);
	}

	VkCommandBuffer beginSingleTimeCommands() {
		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandPool = commandPool;
		allocInfo.commandBufferCount = 1;

		VkCommandBuffer commandBuffer;
		vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);

		VkCommandBufferBeginInfo beginInfo = {};
		beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
		beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;

		vkBeginCommandBuffer(commandBuffer, &beginInfo);

		return commandBuffer;
	}

	void endSingleTimeCommands(VkCommandBuffer commandBuffer) {
		vkEndCommandBuffer(commandBuffer);

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffer;

		vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
		vkQueueWaitIdle(graphicsQueue);

		vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);
	}

	uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
		VkPhysicalDeviceMemoryProperties memProperties;
		vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);

		for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
			if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
				return i;
			}
		}

		throw std::runtime_error("failed to find suitable memory type!");
	}

	void createFramebuffers() {
		swapChainFramebuffers.resize(swapChainImageViews.size());
		for (size_t i = 0; i < swapChainImageViews.size(); i++) {

			std::array<VkImageView, 2> attachments = { swapChainImageViews[i], depthImageView };

			VkFramebufferCreateInfo framebufferInfo = {};
			framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
			framebufferInfo.renderPass = renderPass;
			framebufferInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
			framebufferInfo.pAttachments = attachments.data();
			framebufferInfo.width = swapChainExtent.width;
			framebufferInfo.height = swapChainExtent.height;
			framebufferInfo.layers = 1;

			if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create framebuffer!");
			}
		}
	}

	void createDescriptorSetLayout() {
		VkDescriptorSetLayoutBinding uboLayoutBinding = {};
		uboLayoutBinding.binding = 0;
		uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		uboLayoutBinding.descriptorCount = 1;
		uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
		uboLayoutBinding.pImmutableSamplers = nullptr; // Optional

		//爲組合圖像採樣器描述符添加一個VkDescriptorSetLayoutBinding
		VkDescriptorSetLayoutBinding samplerLayoutBinding = {};
		samplerLayoutBinding.binding = 1;
		samplerLayoutBinding.descriptorCount = 1;
		samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
		samplerLayoutBinding.pImmutableSamplers = nullptr;
		//確保stageFlags正確設置,指定我們打算在片段着色器中使用組合圖像採樣器描述符。這就是片段顏色最終被確定的地方。可以在頂點着色器中使用紋理採樣
		samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;

		std::array<VkDescriptorSetLayoutBinding, 2> bindings = { uboLayoutBinding, samplerLayoutBinding };
		VkDescriptorSetLayoutCreateInfo layoutInfo = {};
		layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
		layoutInfo.bindingCount = static_cast<uint32_t>(bindings.size());
		layoutInfo.pBindings = bindings.data();


		if (vkCreateDescriptorSetLayout(device, &layoutInfo, nullptr, &descriptorSetLayout) != VK_SUCCESS) {
			throw std::runtime_error("failed to create descriptor set layout!");
		}
	}

	void createGraphicsPipeline() {
		auto vertShaderCode = readFile("shader.vert.spv");
		auto fragShaderCode = readFile("shader.frag.spv");

		VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
		VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);

		VkPipelineShaderStageCreateInfo vertShaderStageInfo = {};
		vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
		vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
		vertShaderStageInfo.module = vertShaderModule;
		vertShaderStageInfo.pName = "main";

		VkPipelineShaderStageCreateInfo fragShaderStageInfo = {};
		fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
		fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
		fragShaderStageInfo.module = fragShaderModule;
		fragShaderStageInfo.pName = "main";

		VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, fragShaderStageInfo };

		VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
		vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;

		//配置圖形管線可以接受重新定義的頂點數據的格式
		auto bindingDescription = Vertex::getBindingDescription();
		auto attributeDescriptions = Vertex::getAttributeDescriptions();

		vertexInputInfo.vertexBindingDescriptionCount = 1;
		vertexInputInfo.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
		vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
		vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();

		VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};
		inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
		inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
		inputAssembly.primitiveRestartEnable = VK_FALSE;

		VkViewport viewport = {};
		viewport.x = 0.0f;
		viewport.y = 0.0f;
		viewport.width = (float)swapChainExtent.width;
		viewport.height = (float)swapChainExtent.height;
		viewport.minDepth = 0.0f;
		viewport.maxDepth = 1.0f;

		VkRect2D scissor = {};
		scissor.offset = { 0, 0 };
		scissor.extent = swapChainExtent;

		VkPipelineViewportStateCreateInfo viewportState = {};
		viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
		viewportState.viewportCount = 1;
		viewportState.pViewports = &viewport;
		viewportState.scissorCount = 1;
		viewportState.pScissors = &scissor;

		VkPipelineRasterizationStateCreateInfo rasterizer = {};
		rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
		rasterizer.depthClampEnable = VK_FALSE;
		rasterizer.rasterizerDiscardEnable = VK_FALSE;
		rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
		rasterizer.lineWidth = 1.0f;
		rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
		rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
		rasterizer.depthBiasEnable = VK_FALSE;

		VkPipelineMultisampleStateCreateInfo multisampling = {};
		multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
		multisampling.sampleShadingEnable = VK_FALSE;
		multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
		multisampling.minSampleShading = 1.0f; // Optional
		multisampling.pSampleMask = nullptr; // Optional
		multisampling.alphaToCoverageEnable = VK_FALSE; // Optional
		multisampling.alphaToOneEnable = VK_FALSE; // Optional

		VkPipelineDepthStencilStateCreateInfo depthStencil = {};
		depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
		depthStencil.depthTestEnable = VK_TRUE;  //指定是否應該將新的深度緩衝區與深度緩衝區進行比較,以確認是否應該被丟棄
		depthStencil.depthWriteEnable = VK_TRUE; //指定通過深度測試的新的片段深度是否應該被實際寫入深度緩衝區
		depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;//指定執行保留或者丟棄片段的比較細節
		depthStencil.depthBoundsTestEnable = VK_FALSE; //depthBoundsTestEnable, minDepthBounds 和 maxDepthBounds 字段用於可選擇的優化深度綁定測試
		depthStencil.minDepthBounds = 0.0f; // Optional
		depthStencil.maxDepthBounds = 1.0f; // Optional
		depthStencil.stencilTestEnable = VK_FALSE;//用於配置模版緩衝區的操作
		depthStencil.front = {}; // Optional
		depthStencil.back = {}; // Optional

		VkPipelineColorBlendAttachmentState colorBlendAttachment = {};
		colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
		colorBlendAttachment.blendEnable = VK_FALSE;
		colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
		colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
		colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional
		colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
		colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
		colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional

		VkPipelineColorBlendStateCreateInfo colorBlending = {};
		colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
		colorBlending.logicOpEnable = VK_FALSE;
		colorBlending.logicOp = VK_LOGIC_OP_COPY;
		colorBlending.attachmentCount = 1;
		colorBlending.pAttachments = &colorBlendAttachment;
		colorBlending.blendConstants[0] = 0.0f;
		colorBlending.blendConstants[1] = 0.0f;
		colorBlending.blendConstants[2] = 0.0f;
		colorBlending.blendConstants[3] = 0.0f;

		VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
		pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
		pipelineLayoutInfo.setLayoutCount = 1; // Optional
		pipelineLayoutInfo.pSetLayouts = &descriptorSetLayout; // Optional
		pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional
		pipelineLayoutInfo.pPushConstantRanges = 0; // Optional

		if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
			throw std::runtime_error("failed to create pipeline layout!");
		}

		VkGraphicsPipelineCreateInfo pipelineInfo = {};
		pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
		pipelineInfo.stageCount = 2;
		pipelineInfo.pStages = shaderStages;

		pipelineInfo.pVertexInputState = &vertexInputInfo;
		pipelineInfo.pInputAssemblyState = &inputAssembly;
		pipelineInfo.pViewportState = &viewportState;
		pipelineInfo.pRasterizationState = &rasterizer;
		pipelineInfo.pMultisampleState = &multisampling;
		pipelineInfo.pDepthStencilState = &depthStencil;
		pipelineInfo.pColorBlendState = &colorBlending;
		pipelineInfo.pDynamicState = nullptr; // Optional

		pipelineInfo.layout = pipelineLayout;
		pipelineInfo.renderPass = renderPass;
		pipelineInfo.subpass = 0;
		pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional
		pipelineInfo.basePipelineIndex = -1; // Optional

		if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
			throw std::runtime_error("failed to create graphics pipeline!");
		}

		vkDestroyShaderModule(device, fragShaderModule, nullptr);
		vkDestroyShaderModule(device, vertShaderModule, nullptr);
	}

	bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
		uint32_t extensionCount;
		vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);

		std::vector<VkExtensionProperties> availableExtensions(extensionCount);
		vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());

		std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());

		for (const auto& extension : availableExtensions) {
			requiredExtensions.erase(extension.extensionName);
		}

		return requiredExtensions.empty();
	}

	VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {
		if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
			return capabilities.currentExtent;
		}
		else {
			int width, height;
			glfwGetFramebufferSize(window, &width, &height);

			VkExtent2D actualExtent = {
				static_cast<uint32_t>(width),
				static_cast<uint32_t>(height)
			};
			//VkExtent2D actualExtent = { WIDTH, HEIGHT };
			actualExtent.width = std::max(capabilities.minImageExtent.width, std::min(capabilities.maxImageExtent.width, actualExtent.width));
			actualExtent.height = std::max(capabilities.minImageExtent.height, std::min(capabilities.maxImageExtent.height, actualExtent.height));

			return actualExtent;
		}
	}

	SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
		SwapChainSupportDetails details;

		vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);

		uint32_t formatCount;
		vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);

		if (formatCount != 0) {
			details.formats.resize(formatCount);
			vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data());
		}

		uint32_t presentModeCount;
		vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr);

		if (presentModeCount != 0) {
			details.presentModes.resize(presentModeCount);
			vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data());
		}

		return details;
	}

	VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
		if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) {
			return { VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR };
		}
		for (const auto& availableFormat : availableFormats) {
			if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
				return availableFormat;
			}
		}
		return availableFormats[0];
	}

	VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR> availablePresentModes) {
		VkPresentModeKHR bestMode = VK_PRESENT_MODE_FIFO_KHR;

		for (const auto& availablePresentMode : availablePresentModes) {
			if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
				return availablePresentMode;
			}
			else if (availablePresentMode == VK_PRESENT_MODE_IMMEDIATE_KHR) {
				bestMode = availablePresentMode;
			}
		}

		return bestMode;
	}

	QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
		QueueFamilyIndices indices;

		uint32_t queueFamilyCount = 0;
		vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);

		std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
		vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());

		int i = 0;
		for (const auto& queueFamily : queueFamilies) {
			if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
				indices.graphicsFamily = i;
			}

			VkBool32 presentSupport = false;
			vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);

			if (presentSupport) {
				indices.presentFamily = i;
			}

			if (indices.isComplete()) {
				break;
			}

			i++;
		}

		return indices;
	}

	std::vector<const char*> getRequiredExtensions() {
		uint32_t glfwExtensionCount = 0;
		const char** glfwExtensions;
		glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);

		std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);

		if (enableValidationLayers) {
			extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
		}

		return extensions;
	}

	bool checkValidationLayerSupport() {
		uint32_t layerCount;
		vkEnumerateInstanceLayerProperties(&layerCount, nullptr);

		std::vector<VkLayerProperties> availableLayers(layerCount);
		vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());

		for (const char* layerName : validationLayers) {
			bool layerFound = false;

			for (const auto& layerProperties : availableLayers) {
				if (strcmp(layerName, layerProperties.layerName) == 0) {
					layerFound = true;
					break;
				}
			}

			if (!layerFound) {
				return false;
			}
		}

		return true;
	}

	static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) {
		std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;

		return VK_FALSE;
	}
};

int main() {
	HelloTriangleApplication app;

	try {
		app.run();
	}
	catch (const std::exception& e) {
		std::cerr << e.what() << std::endl;
		return EXIT_FAILURE;
	}

	return EXIT_SUCCESS;
}

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章