Vulkan填坑學習Day26-2—深度緩衝區

Vulkan 深度緩衝區

Vulkan 深度緩衝區,到目前爲止,我們所使用的幾何圖形爲3D,但仍然完全扁平的。在本章節中我們添加Z座標到3D模型數據中。我們將使用這個第三個座標在當前平面上放置一個正方形,以查看幾何圖形沒有進行深度排序造成的問題。

一、3D 空間

修改 Vertex 結構體使用3D vector作爲位置,並且更新對應VkVertexInputAttributeDescription的 format。

struct Vertex {
    glm::vec3 pos;
    glm::vec3 color;
    glm::vec2 texCoord;

    ...

    static std::array<VkVertexInputAttributeDescription, 3> getAttributeDescriptions() {
        std::array<VkVertexInputAttributeDescription, 3> attributeDescriptions = {};

        attributeDescriptions[0].binding = 0;
        attributeDescriptions[0].location = 0;
        attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT;
        attributeDescriptions[0].offset = offsetof(Vertex, pos);

        ...
    }
};

下一步更新頂點着色器接受和轉換3D座標作爲輸入。別忘記重新編譯它!

layout(location = 0) in vec3 inPosition;

...

void main() {
    gl_Position = ubo.proj * ubo.view * ubo.model * vec4(inPosition, 1.0);
    fragColor = inColor;
    fragTexCoord = inTexCoord;
}

最後,更新 vertices 容器包含 Z 座標:

const std::vector<Vertex> vertices = {
    {{-0.5f, -0.5f, 0.0f}, {1.0f, 0.0f, 0.0f}, {0.0f, 0.0f}},
    {{0.5f, -0.5f, 0.0f}, {0.0f, 1.0f, 0.0f}, {1.0f, 0.0f}},
    {{0.5f, 0.5f, 0.0f}, {0.0f, 0.0f, 1.0f}, {1.0f, 1.0f}},
    {{-0.5f, 0.5f, 0.0f}, {1.0f, 1.0f, 1.0f}, {0.0f, 1.0f}}
};

如果運行程序,會看到與之前同樣的結果。現在是時候添加一些額外的幾何圖形,使場景更有趣,並展示我們將在本章節中解決的問題。複製頂點以定義當前正方形的位置,如下所示:
在這裏插入圖片描述
使用Z座標 -0.5f 並且爲額外的方形添加適當的索引:

const std::vector<Vertex> vertices = {
    {{-0.5f, -0.5f, 0.0f}, {1.0f, 0.0f, 0.0f}, {0.0f, 0.0f}},
    {{0.5f, -0.5f, 0.0f}, {0.0f, 1.0f, 0.0f}, {1.0f, 0.0f}},
    {{0.5f, 0.5f, 0.0f}, {0.0f, 0.0f, 1.0f}, {1.0f, 1.0f}},
    {{-0.5f, 0.5f, 0.0f}, {1.0f, 1.0f, 1.0f}, {0.0f, 1.0f}},

    {{-0.5f, -0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}, {0.0f, 0.0f}},
    {{0.5f, -0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}, {1.0f, 0.0f}},
    {{0.5f, 0.5f, -0.5f}, {0.0f, 0.0f, 1.0f}, {1.0f, 1.0f}},
    {{-0.5f, 0.5f, -0.5f}, {1.0f, 1.0f, 1.0f}, {0.0f, 1.0f}}
};

const std::vector<uint16_t> indices = {
    0, 1, 2, 2, 3, 0,
    4, 5, 6, 6, 7, 4
};

運行程序現在會看到類似於Escher的例子:
在這裏插入圖片描述

問題是,下方正方形的片段被繪製在上方的片段上,這僅僅是因爲它在索引數組中。有兩種方式解決這種問題:

  • 從後面到前面深入分析所有的繪圖調用
  • 使用深度緩衝區進行深度測試

第一種方法通常用於繪製透明對象,因爲與順序無關的透明度是難以解決的難題。然而,通過深度排序片段的問題通常使用深度緩衝區 depth buffer 來解決。深度緩衝區是一個額外的附件,用於存儲每個頂點的深度信息,就像顏色附件存儲每個位置的顏色信息一樣。每次光柵化生成片段時,深度測試將檢查新片段是否比上一個片段更近。如果沒有,新的片段被丟棄。一個片段將深度測試的值寫入深度緩衝區。可以從片段着色器處理此值,就像可以操作顏色輸出一樣。

#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

藉助GLM生產出的透視投影矩陣默認使用OpenGL的深度範圍,收斂在 -1.0 到 1.0。我們需要使用GLM_FORCE_DEPTH_ZERO_TO_ONE定義將其配置爲使用 0.0 到 1.0 的Vulkan深度範圍。

二、深度圖像和視圖

深度附件是基於圖像的,就像顏色附件。所不同的是交換鏈不會自動創建深度圖像。我們僅需要一個深度圖像,因爲每次只有一個繪製操作。深度圖像再次需要申請三種資源:圖像,內存和圖像視圖。

VkImage depthImage;
VkDeviceMemory depthImageMemory;
VkImageView depthImageView;

創建createDepthResources函數來配置資源:

void initVulkan() {
    ...
    createCommandPool();
    createDepthResources();
    createTextureImage();
    ...
}

...

void createDepthResources() {

}

創建深度圖像非常直接。它具備與顏色附件同樣的分辨率,定義交換鏈尺寸,合理的深度圖像是否方式,最佳的平鋪和設備本地內存。唯一的問題是:對於深度圖像什麼是正確的格式?format必須包含深度原件,諸如 VK_FORMAT 中的 D??。

不像紋理貼圖,我們不一定需要特定的格式,因爲我們不會直接從程序中訪問紋素。它僅僅需要一個合理的準確性,至少24位在實際程序中是常見的。有幾種符合要求的格式:

  • VK_FORMAT_D32_SFLOAT: 32-bit float depth
  • VK_FORMAT_D32_SFLOAT_S8_UNIT: 32-bit signed float depth 和 8-bit
    stencil component
  • VK_FORMAT_D32_UNORM_S8_UINT: 24-bit float depth 和 8-bit stencil
    component

stencil component 模版組件用於模版測試** stencil tests**,這是可以與深度測試組合的附加測試。我們將在未來的章節中展開。

我們可以簡化爲 VK_FORMAT_D32_SFLOAT 格式,因爲它的支持是非常常見的,但是儘可能的添加一些額外的靈活性也是很好的。我們增加一個函數 findSupportedFormat 從候選格式列表中 根據期望值的降序原則,檢測第一個得到支持的格式。

VkFormat findSupportedFormat(const std::vector<VkFormat>& candidates, VkImageTiling tiling, VkFormatFeatureFlags features) {

}

支持的格式依賴於所使用的 tiling mode平鋪模式和具體的用法,所以我們必須包含這些參數。可以使用vkGetPhysicalDeviceFormatProperties函數查詢格式的支持:

for (VkFormat format : candidates) {
    VkFormatProperties props;
    vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props);
}

VkFormatProperties 結構體包含三個字段:

  • linearTilingFeatures: 使用線性平鋪格式
  • optimalTilingFeatures: 使用最佳平鋪格式
  • bufferFeatures: 支持緩衝區

只有前兩個在這裏是相關的,我們檢查取決於函數的 tiling 平鋪參數。

if (tiling == VK_IMAGE_TILING_LINEAR && (props.linearTilingFeatures & features) == features) {
    return format;
} else if (tiling == VK_IMAGE_TILING_OPTIMAL && (props.optimalTilingFeatures & features) == features) {
    return format;
}

如果沒有任何期望的格式得到支持,我們可以指定一個特殊的值或者拋出異常:

VkFormat findSupportedFormat(const std::vector<VkFormat>& candidates, VkImageTiling tiling, VkFormatFeatureFlags features) {
    for (VkFormat format : candidates) {
        VkFormatProperties props;
        vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props);

        if (tiling == VK_IMAGE_TILING_LINEAR && (props.linearTilingFeatures & features) == features) {
            return format;
        } else if (tiling == VK_IMAGE_TILING_OPTIMAL && (props.optimalTilingFeatures & features) == features) {
            return format;
        }
    }

    throw std::runtime_error("failed to find supported format!");
}

我們添加 findDepthFormat 輔助函數, 以選擇具有深度組件的格式,該深度組件支持使用深度附件:

VkFormat findDepthFormat() {
    return findSupportedFormat(
        {VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT},
        VK_IMAGE_TILING_OPTIMAL,
        VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT
    );
}

確保使用 VK_FORMAT_FEATURE_ 標誌代替 VK_IMAGE_USAGE_ 。所有的候選格式都包含深度組件,但是最後兩個也包含 stencil 組件。我們不會使用它,但是我們需要考慮到這一點,比如在這些格式的圖像佈局進行變換的時候。添加一個簡單的輔助函數,告訴我們所選擇的深度格式是否包含模版組件:

bool hasStencilComponent(VkFormat format) {
    return format == VK_FORMAT_D32_SFLOAT_S8_UINT || format == VK_FORMAT_D24_UNORM_S8_UINT;
}

調用函數從 createDepthResources 找到深度格式:

VkFormat depthFormat = findDepthFormat();

我們現在擁有所有必須的信息來調用我們的 createImage 和 createImageView 輔助函數:

createImage(swapChainExtent.width, swapChainExtent.height, depthFormat, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, depthImage, depthImageMemory);
depthImageView = createImageView(depthImage, depthFormat);

然而,createImageView 函數現在假定子資源始終爲 VK_IMAGE_ASPECT_COLOR_BIT , 因此我們需要將該字段轉換爲參數:

VkImageView createImageView(VkImage image, VkFormat format, VkImageAspectFlags aspectFlags) {
    ...
    viewInfo.subresourceRange.aspectMask = aspectFlags;
    ...
}

更新對此函數的所有調用,確保正確無誤:

swapChainImageViews[i] = createImageView(swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT);
...
depthImageView = createImageView(depthImage, depthFormat, VK_IMAGE_ASPECT_DEPTH_BIT);
...
textureImageView = createImageView(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_ASPECT_COLOR_BIT);

這就是創建深度圖像。我們不需要映射它或者拷貝另一個圖像,因爲我們會在渲染通道開始的時候進行清理,就像顏色附件那樣。然而,它仍然需要變換爲合適的深度附件使用的佈局。我們可以在渲染通道中像顏色附件那樣做,但是在這裏我們選擇使用管線屏障,因爲變換隻會發生一次。

transitionImageLayout(depthImage, depthFormat, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);

未定義的佈局可以作爲初始佈局,因爲深度圖像內容無關緊要。我們需要在 transitionImageLayout 中更新一些邏輯使用正確的子資源:

if (newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
    barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;

    if (hasStencilComponent(format)) {
        barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
    }
} else {
    barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
}

儘管我們不會使用模版組件,我們確實需要將其包含在深度圖像的佈局變換中。

最後,添加正確的訪問掩碼和管線階段:

if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
    barrier.srcAccessMask = 0;
    barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;

    sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
    destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
} else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
    barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
    barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;

    sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
    destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
} else if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
    barrier.srcAccessMask = 0;
    barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;

    sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
    destinationStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
} else {
    throw std::invalid_argument("unsupported layout transition!");
}

讀取深度緩衝區並執行深度測試,以確認當前片段是否可見,並將在繪製新片段時更新深度緩衝區。讀取操作發生在 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT 階段,並在 VK_PIPELINE_STAGE_LATE_FRAGMETN_TESTS_BIT 中進行寫入操作。我們應該選擇與指定操作相匹配的最早的管線階段,以便在需要時可以作爲深度附件使用。

三、渲染過程

現在修改 createRenderPass 函數包含深度附件。首先指定 VkAttachmentDescription。

VkAttachmentDescription depthAttachment = {};
depthAttachment.format = findDepthFormat();
depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
depthAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
depthAttachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

format 應該與深度圖像一致。這次我們不會關心存儲深度數據(storeOp),因爲繪製完成後它不會在被使用。這可能允許硬件執行其他的優化。就像顏色緩衝區一樣,我們不關心之前的深度內容,所以我們可以使用 VK_IMAGE_LAYOUT_UNDEFINED作爲 initialLayout。

VkAttachmentReference depthAttachmentRef = {};
depthAttachmentRef.attachment = 1;
depthAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

添加第一個(唯一的)子通道的附件引用:

VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorAttachmentRef;
subpass.pDepthStencilAttachment = &depthAttachmentRef;

與顏色附件不同的是,子通道僅僅使用一個深度 (模版) 附件。對多個緩衝區進行深度測試並沒有任何意義。

std::array<VkAttachmentDescription, 2> attachments = {colorAttachment, depthAttachment};
VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
renderPassInfo.pAttachments = attachments.data();
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 1;
renderPassInfo.pDependencies = &dependency;

最後更新 VkRenderPassCreateInfo 結構體引用兩個附件。

四、幀緩衝區

下一步修改幀緩衝區的創建以及將深度圖像綁定到深度附件。來到 createFramebuffers 函數,並指定深度圖像視圖爲第二個附件:

std::array<VkImageView, 2> attachments = {
    swapChainImageViews[i],
    depthImageView
};

VkFramebufferCreateInfo framebufferInfo = {};
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebufferInfo.renderPass = renderPass;
framebufferInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
framebufferInfo.pAttachments = attachments.data();
framebufferInfo.width = swapChainExtent.width;
framebufferInfo.height = swapChainExtent.height;
framebufferInfo.layers = 1;

每個交換鏈圖像的顏色附件不同,但是所有這些都是使用相同的深度圖像,由於我們的信號量,同一時間只有一個渲染通道執行。

我們需要移動 createFramebuffers 函數的調用位置,以確保在深度圖像視圖實際創建後調用。

void initVulkan() {
    ...
    createDepthResources();
    createFramebuffers();
    ...
}

五、清除數據

因爲我們現在有多個帶 VK_ATTACHMENT_LOAD_OP_CLEAR 的附件,我們還需要指定多個清除值。來到 createCommandBuffers 並創建一個 VkClearValue 結構體的數組:

std::array<VkClearValue, 2> clearValues = {};
clearValues[0].color = {0.0f, 0.0f, 0.0f, 1.0f};
clearValues[1].depthStencil = {1.0f, 0};

renderPassInfo.clearValueCount = static_cast<uint32_t>(clearValues.size());
renderPassInfo.pClearValues = clearValues.data();

在Vulkan中深度緩衝區的數值範圍在 0.0 到 1.0 之間。其中 1.0 位於遠視圖平面,在近視圖平面處爲 0.0。深度緩衝區的每個點的初始值爲最深的可能的深度值,即 1.0。

六、深度模版狀態

深度附件現在已經準備好,但是深度測試仍然需要在圖形管線開啓。它通過 VkPipelineDepthStencilStateCreateInfo 結構體配置:

VkPipelineDepthStencilStateCreateInfo depthStencil = {};
depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencil.depthTestEnable = VK_TRUE;
depthStencil.depthWriteEnable = VK_TRUE;

depthTestEnable 字段指定是否應該將新的深度緩衝區與深度緩衝區進行比較,以確認是否應該被丟棄。depthWriteEnable 字段指定通過深度測試的新的片段深度是否應該被實際寫入深度緩衝區。這在繪製透明對象的時候非常有用。它們應該與之前渲染的不透明對象進行比較,但不會導致更遠的透明對象不被繪製。

depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;

depthCompareOp 字段指定執行保留或者丟棄片段的比較細節。我們堅持深度值較低的慣例,它意味着更近。所以新的片段的深度應該更小。

depthStencil.depthBoundsTestEnable = VK_FALSE;
depthStencil.minDepthBounds = 0.0f; // Optional
depthStencil.maxDepthBounds = 1.0f; // Optional

depthBoundsTestEnable, minDepthBounds 和 maxDepthBounds 字段用於可選擇的優化深度綁定測試。基本上,這允許只保留落在指定深度範圍內的片元。我們不會使用該功能。

depthStencil.stencilTestEnable = VK_FALSE;
depthStencil.front = {}; // Optional
depthStencil.back = {}; // Optional

最後三個字段用於配置模版緩衝區的操作,同樣的,在本系列教程中我們也不會使用該功能。如果想使用該功能,要確保 depth/stencil 圖像的格式包含模版原件。
更新 VkGraphicsPipelineCreateInfo 結構體引用更深度模版狀態。如果渲染通道包含深度模版附件,則必須指定深度模版狀態。

運行程序,應該可以看到幾何圖形的片元按照正確的方式排列順序。
在這裏插入圖片描述

七、窗口大小調整

當窗口調整大小以匹配新的顏色附件分辨率時,深度緩衝區的分辨率應該進行變化。在這種情況下,擴展 rebuildSwapChain 函數來重新創建深度資源:

void recreateSwapChain() {
    vkDeviceWaitIdle(device);

    createSwapChain();
    createImageViews();
    createRenderPass();
    createGraphicsPipeline();
    createDepthResources();
    createFramebuffers();
    createCommandBuffers();
}

清理操作應該在交換鏈清理功能中調用:

void cleanupSwapChain() {
    vkDestroyImageView(device, depthImageView, nullptr);
    vkDestroyImage(device, depthImage, nullptr);
    vkFreeMemory(device, depthImageMemory, nullptr);

    ...
}

恭喜,現在應用程序終於準備好渲染任意幾何圖形了,並看起來正確。我們將在下一章中嘗試繪製紋理模型!

附:源碼

//26_combined_image_sampler.cpp
#define GLFW_INCLUDE_VULKAN
#define GLM_FORCE_RADIANS
#include <GLFW/glfw3.h>

#define STB_IMAGE_IMPLEMENTATION
#include <stb/stb_image.h>

#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include <fstream>
#include <iostream>
#include <stdexcept>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <set>
#include <array>
#include <algorithm>
#include <chrono>

const int WIDTH = 800;
const int HEIGHT = 600;
const int MAX_FRAMES_IN_FLIGHT = 2;

const std::vector<const char*> validationLayers = {
	"VK_LAYER_KHRONOS_validation"
};

const std::vector<const char*> deviceExtensions = {
	VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endif

VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
	auto func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
	if (func != nullptr) {
		return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
	}
	else {
		return VK_ERROR_EXTENSION_NOT_PRESENT;
	}
}

void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
	auto func = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
	if (func != nullptr) {
		func(instance, debugMessenger, pAllocator);
	}
}

struct QueueFamilyIndices {
	uint32_t graphicsFamily = -1;
	uint32_t presentFamily = -1;

	bool isComplete() {
		return graphicsFamily >= 0 && presentFamily >= 0;
	}
};

struct SwapChainSupportDetails {
	VkSurfaceCapabilitiesKHR capabilities;
	std::vector<VkSurfaceFormatKHR> formats;
	std::vector<VkPresentModeKHR> presentModes;
};

struct Vertex {
	glm::vec3  pos;
	glm::vec3 color;
	glm::vec2 texCoord;

	//綁定描述
	static VkVertexInputBindingDescription getBindingDescription() {
		VkVertexInputBindingDescription bindingDescription = {};
		bindingDescription.binding = 0;
		bindingDescription.stride = sizeof(Vertex);
		bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

		return bindingDescription;
	}

	//屬性描述
	static std::array<VkVertexInputAttributeDescription, 3> getAttributeDescriptions() {
		std::array<VkVertexInputAttributeDescription, 3> attributeDescriptions = {};

		attributeDescriptions[0].binding = 0;
		attributeDescriptions[0].location = 0;
		attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT;
		attributeDescriptions[0].offset = offsetof(Vertex, pos);

		attributeDescriptions[1].binding = 0;
		attributeDescriptions[1].location = 1;
		attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
		attributeDescriptions[1].offset = offsetof(Vertex, color);

		attributeDescriptions[2].binding = 0;
		attributeDescriptions[2].location = 2;
		attributeDescriptions[2].format = VK_FORMAT_R32G32_SFLOAT;
		attributeDescriptions[2].offset = offsetof(Vertex, texCoord);

		return attributeDescriptions;
	}
};

struct UniformBufferObject {
	glm::mat4 model;
	glm::mat4 view;
	glm::mat4 proj;
};

const std::vector<Vertex> vertices = {
	{{-0.5f, -0.5f, 0.0f}, {1.0f, 0.0f, 0.0f}, {0.0f, 0.0f}},
	{{0.5f, -0.5f, 0.0f}, {0.0f, 1.0f, 0.0f}, {1.0f, 0.0f}},
	{{0.5f, 0.5f, 0.0f}, {0.0f, 0.0f, 1.0f}, {1.0f, 1.0f}},
	{{-0.5f, 0.5f, 0.0f}, {1.0f, 1.0f, 1.0f}, {0.0f, 1.0f}},

	{{-0.5f, -0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}, {0.0f, 0.0f}},
	{{0.5f, -0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}, {1.0f, 0.0f}},
	{{0.5f, 0.5f, -0.5f}, {0.0f, 0.0f, 1.0f}, {1.0f, 1.0f}},
	{{-0.5f, 0.5f, -0.5f}, {1.0f, 1.0f, 1.0f}, {0.0f, 1.0f}}
};

const std::vector<uint16_t> indices = {
	0, 1, 2, 2, 3, 0,
	4, 5, 6, 6, 7, 4
};

class HelloTriangleApplication {
public:
	void run() {
		initWindow();
		initVulkan();
		mainLoop();
		cleanup();
	}

private:
	GLFWwindow* window;

	VkInstance instance;
	VkDebugUtilsMessengerEXT debugMessenger;
	VkSurfaceKHR surface;

	VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
	VkDevice device;

	VkQueue graphicsQueue;
	VkQueue presentQueue;

	VkSwapchainKHR swapChain;
	std::vector<VkImage> swapChainImages;
	VkFormat swapChainImageFormat;
	VkExtent2D swapChainExtent;

	std::vector<VkImageView> swapChainImageViews;

	VkRenderPass renderPass;
	VkDescriptorSetLayout descriptorSetLayout;
	VkPipelineLayout pipelineLayout;
	VkPipeline graphicsPipeline;
	std::vector<VkFramebuffer> swapChainFramebuffers;

	VkCommandPool commandPool;
	std::vector<VkCommandBuffer> commandBuffers;

	VkSemaphore imageAvailableSemaphore;
	VkSemaphore renderFinishedSemaphore;

	std::vector<VkSemaphore> imageAvailableSemaphores;
	std::vector<VkSemaphore> renderFinishedSemaphores;
	std::vector<VkFence> inFlightFences;
	std::vector<VkFence> imagesInFlight;
	size_t currentFrame = 0;

	VkImage textureImage;
	VkDeviceMemory textureImageMemory;
	VkImageView textureImageView;//保存紋理圖像
	VkSampler textureSampler;//創建採樣器

	VkBuffer vertexBuffer;
	VkDeviceMemory vertexBufferMemory;
	VkBuffer indexBuffer;
	VkDeviceMemory indexBufferMemory;
	VkBuffer uniformBuffer;
	VkDeviceMemory uniformBufferMemory;

	VkDescriptorPool descriptorPool;
	VkDescriptorSet descriptorSet;

	VkBuffer stagingBuffer;
	VkDeviceMemory stagingBufferMemory;

	VkImage depthImage;
	VkDeviceMemory depthImageMemory;
	VkImageView depthImageView;

	void initWindow() {
		glfwInit();

		glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
		//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);

		window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan_Day27_depth_buffering", nullptr, nullptr);

		glfwSetWindowUserPointer(window, this);
		glfwSetWindowSizeCallback(window, HelloTriangleApplication::onWindowResized);
	}

	void initVulkan() {
		createInstance();
		setupDebugMessenger();
		createSurface();
		pickPhysicalDevice();
		createLogicalDevice();
		createSwapChain();
		createImageViews();
		createRenderPass();
		createDescriptorSetLayout();
		createGraphicsPipeline();
		createCommandPool();
		createDepthResources();
		createFramebuffers();
		createTextureImage();
		createTextureImageView();
		createTextureSampler();
		createVertexBuffer();
		createIndexBuffer();
		createUniformBuffer();
		createDescriptorPool();
		createDescriptorSet();
		createCommandBuffers();
		createSemaphores();
	}

	void mainLoop() {
		while (!glfwWindowShouldClose(window)) {
			glfwPollEvents();
			updateUniformBuffer();
			drawFrame();
		}

		vkDeviceWaitIdle(device);
	}

	void cleanup() {
		cleanupSwapChain();
		vkDestroySampler(device, textureSampler, nullptr);
		vkDestroyImageView(device, textureImageView, nullptr);
		vkDestroyImage(device, textureImage, nullptr);
		vkFreeMemory(device, textureImageMemory, nullptr);
		vkDestroyDescriptorPool(device, descriptorPool, nullptr);
		vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
		vkDestroyBuffer(device, uniformBuffer, nullptr);
		vkFreeMemory(device, uniformBufferMemory, nullptr);
		vkDestroyBuffer(device, indexBuffer, nullptr);
		vkFreeMemory(device, indexBufferMemory, nullptr);
		vkDestroyBuffer(device, vertexBuffer, nullptr);
		vkFreeMemory(device, vertexBufferMemory, nullptr);

		for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
			vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr);
			vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr);
			vkDestroyFence(device, inFlightFences[i], nullptr);
		}

		vkDestroyCommandPool(device, commandPool, nullptr);

		vkDestroyDevice(device, nullptr);

		if (enableValidationLayers) {
			DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
		}

		vkDestroySurfaceKHR(instance, surface, nullptr);
		vkDestroyInstance(instance, nullptr);

		glfwDestroyWindow(window);

		glfwTerminate();
	}

	void updateUniformBuffer() {
		static auto startTime = std::chrono::high_resolution_clock::now();
		auto currentTime = std::chrono::high_resolution_clock::now();
		float time = std::chrono::duration_cast<std::chrono::milliseconds>(currentTime - startTime).count() / 1000.0f;

		UniformBufferObject ubo = {};
		//ubo.model = glm::rotate(glm::mat4(1.0f), time * glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f));
		ubo.model = glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f));

		ubo.view = glm::lookAt(glm::vec3(2.0f, 2.0f, 2.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f));

		ubo.proj = glm::perspective(glm::radians(45.0f), swapChainExtent.width / (float)swapChainExtent.height, 0.1f, 10.0f);

		ubo.proj[1][1] *= -1;

		void* data;
		vkMapMemory(device, uniformBufferMemory, 0, sizeof(ubo), 0, &data);
		memcpy(data, &ubo, sizeof(ubo));
		vkUnmapMemory(device, uniformBufferMemory);
	}

	void drawFrame() {
		vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX);

		uint32_t imageIndex;
		VkResult result = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);

		if (result == VK_ERROR_OUT_OF_DATE_KHR) {
			recreateSwapChain();
			return;
		}
		else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
			throw std::runtime_error("failed to acquire swap chain image!");
		}

		if (imagesInFlight[imageIndex] != VK_NULL_HANDLE) {
			vkWaitForFences(device, 1, &imagesInFlight[imageIndex], VK_TRUE, UINT64_MAX);
		}
		imagesInFlight[imageIndex] = inFlightFences[currentFrame];

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

		VkSemaphore waitSemaphores[] = { imageAvailableSemaphores[currentFrame] };
		VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
		submitInfo.waitSemaphoreCount = 1;
		submitInfo.pWaitSemaphores = waitSemaphores;
		submitInfo.pWaitDstStageMask = waitStages;

		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffers[imageIndex];

		VkSemaphore signalSemaphores[] = { renderFinishedSemaphores[currentFrame] };
		submitInfo.signalSemaphoreCount = 1;
		submitInfo.pSignalSemaphores = signalSemaphores;

		vkResetFences(device, 1, &inFlightFences[currentFrame]);

		if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]) != VK_SUCCESS) {
			throw std::runtime_error("failed to submit draw command buffer!");
		}

		VkPresentInfoKHR presentInfo = {};
		presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;

		presentInfo.waitSemaphoreCount = 1;
		presentInfo.pWaitSemaphores = signalSemaphores;

		VkSwapchainKHR swapChains[] = { swapChain };
		presentInfo.swapchainCount = 1;
		presentInfo.pSwapchains = swapChains;

		presentInfo.pImageIndices = &imageIndex;

		result = vkQueuePresentKHR(presentQueue, &presentInfo);

		if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
			recreateSwapChain();
		}
		else if (result != VK_SUCCESS) {
			throw std::runtime_error("failed to present swap chain image!");
		}

		currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
	}

	static void onWindowResized(GLFWwindow* window, int width, int height) {
		if (width == 0 || height == 0) return;

		HelloTriangleApplication* app = reinterpret_cast<HelloTriangleApplication*>(glfwGetWindowUserPointer(window));
		app->recreateSwapChain();
	}

	void cleanupSwapChain() {
		vkDestroyImageView(device, depthImageView, nullptr);
		vkDestroyImage(device, depthImage, nullptr);
		vkFreeMemory(device, depthImageMemory, nullptr);

		for (auto framebuffer : swapChainFramebuffers) {
			vkDestroyFramebuffer(device, framebuffer, nullptr);
		}

		vkFreeCommandBuffers(device, commandPool, static_cast<uint32_t>(commandBuffers.size()), commandBuffers.data());

		vkDestroyPipeline(device, graphicsPipeline, nullptr);
		vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
		vkDestroyRenderPass(device, renderPass, nullptr);

		for (auto imageView : swapChainImageViews) {
			vkDestroyImageView(device, imageView, nullptr);
		}

		vkDestroySwapchainKHR(device, swapChain, nullptr);
	}

	void recreateSwapChain() {
		int width = 0, height = 0;
		glfwGetFramebufferSize(window, &width, &height);
		while (width == 0 || height == 0) {
			glfwGetFramebufferSize(window, &width, &height);
			glfwWaitEvents();
		}

		vkDeviceWaitIdle(device);

		cleanupSwapChain();

		createSwapChain();
		createImageViews();
		createRenderPass();
		createGraphicsPipeline();
		createDepthResources();
		createFramebuffers();
		createCommandBuffers();
	}

	void createInstance() {
		if (enableValidationLayers && !checkValidationLayerSupport()) {
			throw std::runtime_error("validation layers requested, but not available!");
		}

		VkApplicationInfo appInfo = {};
		appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
		appInfo.pApplicationName = "Hello Triangle";
		appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
		appInfo.pEngineName = "No Engine";
		appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
		appInfo.apiVersion = VK_API_VERSION_1_0;

		VkInstanceCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
		createInfo.pApplicationInfo = &appInfo;

		auto extensions = getRequiredExtensions();
		createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
		createInfo.ppEnabledExtensionNames = extensions.data();

		VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo;
		if (enableValidationLayers) {
			createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
			createInfo.ppEnabledLayerNames = validationLayers.data();

			populateDebugMessengerCreateInfo(debugCreateInfo);
			createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*)&debugCreateInfo;
		}
		else {
			createInfo.enabledLayerCount = 0;

			createInfo.pNext = nullptr;
		}

		if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
			throw std::runtime_error("failed to create instance!");
		}
	}

	void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
		createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
		createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
		createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
		createInfo.pfnUserCallback = debugCallback;
	}

	void setupDebugMessenger() {
		if (!enableValidationLayers) return;

		VkDebugUtilsMessengerCreateInfoEXT createInfo;
		populateDebugMessengerCreateInfo(createInfo);

		if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
			throw std::runtime_error("failed to set up debug messenger!");
		}
	}

	void createImageViews() {
		swapChainImageViews.resize(swapChainImages.size());
		for (size_t i = 0; i < swapChainImages.size(); i++) {
			swapChainImageViews[i] = createImageView(swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT);
		}
	}

	VkImageView createImageView(VkImage image, VkFormat format,  VkImageAspectFlags aspectFlags) {
		VkImageViewCreateInfo viewInfo = {};
		viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
		viewInfo.image = image;
		viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
		viewInfo.format = format;
		viewInfo.subresourceRange.aspectMask = aspectFlags;
		viewInfo.subresourceRange.baseMipLevel = 0;
		viewInfo.subresourceRange.levelCount = 1;
		viewInfo.subresourceRange.baseArrayLayer = 0;
		viewInfo.subresourceRange.layerCount = 1;

		VkImageView imageView;
		if (vkCreateImageView(device, &viewInfo, nullptr, &imageView) != VK_SUCCESS) {
			throw std::runtime_error("failed to create texture image view!");
		}

		return imageView;
	}

	void createSurface() {
		if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) {
			throw std::runtime_error("failed to create window surface!");
		}
	}

	void pickPhysicalDevice() {
		uint32_t deviceCount = 0;
		vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

		if (deviceCount == 0) {
			throw std::runtime_error("failed to find GPUs with Vulkan support!");
		}

		std::vector<VkPhysicalDevice> devices(deviceCount);
		vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());

		for (const auto& device : devices) {
			if (isDeviceSuitable(device)) {
				physicalDevice = device;
				break;
			}
		}

		if (physicalDevice == VK_NULL_HANDLE) {
			throw std::runtime_error("failed to find a suitable GPU!");
		}
	}

	void createLogicalDevice() {
		QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
		std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
		std::set<uint32_t> uniqueQueueFamilies = { indices.graphicsFamily, indices.presentFamily };
		float queuePriority = 1.0f;
		for (int queueFamily : uniqueQueueFamilies) {
			VkDeviceQueueCreateInfo queueCreateInfo = {};
			queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
			queueCreateInfo.queueFamilyIndex = queueFamily;
			queueCreateInfo.queueCount = 1;
			queueCreateInfo.pQueuePriorities = &queuePriority;
			queueCreateInfos.push_back(queueCreateInfo);
		}

		VkPhysicalDeviceFeatures deviceFeatures = {};
		deviceFeatures.samplerAnisotropy = VK_TRUE;

		VkDeviceCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

		createInfo.pQueueCreateInfos = queueCreateInfos.data();
		createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());

		createInfo.pEnabledFeatures = &deviceFeatures;

		createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
		createInfo.ppEnabledExtensionNames = deviceExtensions.data();

		if (enableValidationLayers) {
			createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
			createInfo.ppEnabledLayerNames = validationLayers.data();
		}
		else {
			createInfo.enabledLayerCount = 0;
		}

		if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
			throw std::runtime_error("failed to create logical device!");
		}

		vkGetDeviceQueue(device, indices.graphicsFamily, 0, &graphicsQueue);
		vkGetDeviceQueue(device, indices.presentFamily, 0, &presentQueue);
	}

	void createSwapChain() {
		SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);

		VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
		VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
		VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);

		uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
		if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
			imageCount = swapChainSupport.capabilities.maxImageCount;
		}

		VkSwapchainCreateInfoKHR createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
		createInfo.surface = surface;

		createInfo.minImageCount = imageCount;
		createInfo.imageFormat = surfaceFormat.format;
		createInfo.imageColorSpace = surfaceFormat.colorSpace;
		createInfo.imageExtent = extent;
		createInfo.imageArrayLayers = 1;
		createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

		QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
		uint32_t queueFamilyIndices[] = { (uint32_t)indices.graphicsFamily, (uint32_t)indices.presentFamily };

		if (indices.graphicsFamily != indices.presentFamily) {
			createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
			createInfo.queueFamilyIndexCount = 2;
			createInfo.pQueueFamilyIndices = queueFamilyIndices;
		}
		else {
			createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
			createInfo.queueFamilyIndexCount = 0; // Optional
			createInfo.pQueueFamilyIndices = nullptr; // Optional
		}

		createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
		createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
		createInfo.presentMode = presentMode;
		createInfo.clipped = VK_TRUE;
		createInfo.oldSwapchain = VK_NULL_HANDLE;

		if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
			throw std::runtime_error("failed to create swap chain!");
		}

		vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
		swapChainImages.resize(imageCount);
		vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());
		swapChainImageFormat = surfaceFormat.format;
		swapChainExtent = extent;
	}

	bool isDeviceSuitable(VkPhysicalDevice device) {
		QueueFamilyIndices indices = findQueueFamilies(device);
		bool extensionsSupported = checkDeviceExtensionSupport(device);

		bool swapChainAdequate = false;
		if (extensionsSupported) {
			SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
			swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
		}
		//各向異性濾波器
		VkPhysicalDeviceFeatures supportedFeatures;
		vkGetPhysicalDeviceFeatures(device, &supportedFeatures);
		return indices.isComplete() && extensionsSupported && swapChainAdequate&& supportedFeatures.samplerAnisotropy;
	}

	void createRenderPass() {
		VkAttachmentDescription colorAttachment = {};
		colorAttachment.format = swapChainImageFormat;
		colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
		colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
		colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
		colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
		colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
		colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
		colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

		VkAttachmentDescription depthAttachment = {};
		depthAttachment.format = findDepthFormat();
		depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
		depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
		depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
		depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
		depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
		depthAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
		depthAttachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

		VkAttachmentReference colorAttachmentRef = {};
		colorAttachmentRef.attachment = 0;
		colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

		VkAttachmentReference depthAttachmentRef = {};
		depthAttachmentRef.attachment = 1;
		depthAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

		VkSubpassDescription subpass = {};
		subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
		subpass.colorAttachmentCount = 1;
		subpass.pColorAttachments = &colorAttachmentRef;
		subpass.pDepthStencilAttachment = &depthAttachmentRef;

		std::array<VkAttachmentDescription, 2> attachments = { colorAttachment, depthAttachment };
		VkRenderPassCreateInfo renderPassInfo = {};
		renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
		renderPassInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
		renderPassInfo.pAttachments = attachments.data();
		renderPassInfo.subpassCount = 1;
		renderPassInfo.pSubpasses = &subpass;
		VkSubpassDependency dependency = {};
		dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
		dependency.dstSubpass = 0;
		dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
		dependency.srcAccessMask = 0;
		dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
		dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
		renderPassInfo.dependencyCount = 1;
		renderPassInfo.pDependencies = &dependency;

		if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
			throw std::runtime_error("failed to create render pass!");
		}
	}

	VkShaderModule createShaderModule(const std::vector<char>& code) {
		VkShaderModuleCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
		createInfo.codeSize = code.size();

		createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());

		VkShaderModule shaderModule;
		if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
			throw std::runtime_error("failed to create shader module!");
		}
		return shaderModule;
	}

	static std::vector<char> readFile(const std::string& filename) {
		std::ifstream file(filename, std::ios::ate | std::ios::binary);

		if (!file.is_open()) {
			throw std::runtime_error("failed to open file!");
		}
		size_t fileSize = (size_t)file.tellg();
		std::vector<char> buffer(fileSize);
		file.seekg(0);
		file.read(buffer.data(), fileSize);
		file.close();
		return buffer;
	}

	void createSemaphores() {
		imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
		renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
		inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);
		imagesInFlight.resize(swapChainImages.size(), VK_NULL_HANDLE);

		VkSemaphoreCreateInfo semaphoreInfo = {};
		semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;

		VkFenceCreateInfo fenceInfo = {};
		fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
		fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;

		for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
			if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS ||
				vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS ||
				vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create synchronization objects for a frame!");
			}
		}
	}

	void createCommandBuffers() {
		commandBuffers.resize(swapChainFramebuffers.size());
		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.commandPool = commandPool;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandBufferCount = (uint32_t)commandBuffers.size();

		if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate command buffers!");
		}

		for (size_t i = 0; i < commandBuffers.size(); i++) {
			VkCommandBufferBeginInfo beginInfo = {};
			beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
			beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
			beginInfo.pInheritanceInfo = nullptr; // Optional

			vkBeginCommandBuffer(commandBuffers[i], &beginInfo);

			VkRenderPassBeginInfo renderPassInfo = {};
			renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
			renderPassInfo.renderPass = renderPass;
			renderPassInfo.framebuffer = swapChainFramebuffers[i];

			renderPassInfo.renderArea.offset = { 0, 0 };
			renderPassInfo.renderArea.extent = swapChainExtent;

			//因爲我們現在有多個帶 VK_ATTACHMENT_LOAD_OP_CLEAR 的附件,我們還需要指定多個清除值
			std::array<VkClearValue, 2> clearValues = {};
			clearValues[0].color = { 0.1f, 0.1f, 0.3f, 0.5f };
			clearValues[1].depthStencil = { 1.0f, 0 };

			renderPassInfo.clearValueCount = static_cast<uint32_t>(clearValues.size());
			renderPassInfo.pClearValues = clearValues.data();

			vkCmdBeginRenderPass(commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);

			//渲染期間綁定緩衝區
			vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

			VkBuffer vertexBuffers[] = { vertexBuffer };
			VkDeviceSize offsets[] = { 0 };
			//綁定頂點緩衝區
			vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets);

			vkCmdBindIndexBuffer(commandBuffers[i], indexBuffer, 0, VK_INDEX_TYPE_UINT16);

			vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);

			vkCmdDrawIndexed(commandBuffers[i], static_cast<uint32_t>(indices.size()), 1, 0, 0, 0);

			//vkCmdDraw(commandBuffers[i], static_cast<uint32_t>(vertices.size()), 1, 0, 0);

			vkCmdEndRenderPass(commandBuffers[i]);

			if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to record command buffer!");
			}
		}

	}

	void createCommandPool() {
		QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);

		VkCommandPoolCreateInfo poolInfo = {};
		poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
		poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily;
		poolInfo.flags = 0; // Optional

		if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
			throw std::runtime_error("failed to create command pool!");
		}
	}

	VkFormat findDepthFormat() {
		return findSupportedFormat(
			{ VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT },
			VK_IMAGE_TILING_OPTIMAL,
			VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT
		);
	}

	VkFormat findSupportedFormat(const std::vector<VkFormat>& candidates, VkImageTiling tiling, VkFormatFeatureFlags features) {
		for (VkFormat format : candidates) {
			VkFormatProperties props;
			vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props);

			if (tiling == VK_IMAGE_TILING_LINEAR && (props.linearTilingFeatures & features) == features) {
				return format;
			}
			else if (tiling == VK_IMAGE_TILING_OPTIMAL && (props.optimalTilingFeatures & features) == features) {
				return format;
			}
		}

		throw std::runtime_error("failed to find supported format!");
	}

	bool hasStencilComponent(VkFormat format) {
		return format == VK_FORMAT_D32_SFLOAT_S8_UINT || format == VK_FORMAT_D24_UNORM_S8_UINT;
	}

	void createDepthResources() {
		VkFormat depthFormat = findDepthFormat();

		createImage(swapChainExtent.width, swapChainExtent.height, depthFormat, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, depthImage, depthImageMemory);
		depthImageView = createImageView(depthImage, depthFormat, VK_IMAGE_ASPECT_DEPTH_BIT);
	}

	void createTextureSampler() {
		VkSamplerCreateInfo samplerInfo = {};
		samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
		//指定紋素放大和縮小內插值方式
		samplerInfo.magFilter = VK_FILTER_LINEAR;
		samplerInfo.minFilter = VK_FILTER_LINEAR;
		//每個軸向使用的尋址模式
		samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
		samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
		samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
		//各向異性過濾器
		samplerInfo.anisotropyEnable = VK_TRUE;
		samplerInfo.maxAnisotropy = 16;
		//samplerInfo.anisotropyEnable = VK_FALSE;
		//samplerInfo.maxAnisotropy = 1;
		//採樣範圍超過圖像時候返回的顏色
		samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
		//指定使用的座標系統,用於訪問圖像的紋素
		samplerInfo.unnormalizedCoordinates = VK_FALSE;
		//開啓比較功能,那麼紋素首先和值進行比較,並且比較後的值用於過濾操作
		samplerInfo.compareEnable = VK_FALSE;
		samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;
		samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
		samplerInfo.mipLodBias = 0.0f;
		samplerInfo.minLod = 0.0f;
		samplerInfo.maxLod = 0.0f;

		//創建採樣器
		if (vkCreateSampler(device, &samplerInfo, nullptr, &textureSampler) != VK_SUCCESS) {
			throw std::runtime_error("failed to create texture sampler!");
		}
	}

	void createTextureImageView() {
		textureImageView = createImageView(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_ASPECT_COLOR_BIT);
	}

	void createTextureImage() {
		int texWidth, texHeight, texChannels;
		stbi_uc* pixels = stbi_load("texture.jpg", &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
		VkDeviceSize imageSize = texWidth * texHeight * 4;

		if (!pixels) {
			throw std::runtime_error("failed to load texture image!");
		}

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;
		createBuffer(imageSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		void* data;
		vkMapMemory(device, stagingBufferMemory, 0, imageSize, 0, &data);
		memcpy(data, pixels, static_cast<size_t>(imageSize));
		vkUnmapMemory(device, stagingBufferMemory);

		stbi_image_free(pixels);

		createImage(texWidth, texHeight, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, textureImage, textureImageMemory);

		transitionImageLayout(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
		copyBufferToImage(stagingBuffer, textureImage, static_cast<uint32_t>(texWidth), static_cast<uint32_t>(texHeight));
		transitionImageLayout(textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}

	void createImage(uint32_t width, uint32_t height, VkFormat format, VkImageTiling tiling, VkImageUsageFlags usage, VkMemoryPropertyFlags properties, VkImage& image, VkDeviceMemory& imageMemory) {
		VkImageCreateInfo imageInfo = {};
		imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
		imageInfo.imageType = VK_IMAGE_TYPE_2D;
		imageInfo.extent.width = width;
		imageInfo.extent.height = height;
		imageInfo.extent.depth = 1;
		imageInfo.mipLevels = 1;
		imageInfo.arrayLayers = 1;
		imageInfo.format = format;
		imageInfo.tiling = tiling;
		imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
		imageInfo.usage = usage;
		imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
		imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

		if (vkCreateImage(device, &imageInfo, nullptr, &image) != VK_SUCCESS) {
			throw std::runtime_error("failed to create image!");
		}

		VkMemoryRequirements memRequirements;
		vkGetImageMemoryRequirements(device, image, &memRequirements);

		VkMemoryAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
		allocInfo.allocationSize = memRequirements.size;
		allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);

		if (vkAllocateMemory(device, &allocInfo, nullptr, &imageMemory) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate image memory!");
		}

		vkBindImageMemory(device, image, imageMemory, 0);
	}

	void transitionImageLayout(VkImage image, VkFormat format, VkImageLayout oldLayout, VkImageLayout newLayout) {
		VkCommandBuffer commandBuffer = beginSingleTimeCommands();

		VkImageMemoryBarrier barrier = {};
		barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
		barrier.oldLayout = oldLayout;
		barrier.newLayout = newLayout;
		barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
		barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
		barrier.image = image;
		//barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
		barrier.subresourceRange.baseMipLevel = 0;
		barrier.subresourceRange.levelCount = 1;
		barrier.subresourceRange.baseArrayLayer = 0;
		barrier.subresourceRange.layerCount = 1;

		if (newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
			barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;

			if (hasStencilComponent(format)) {
				barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
			}
		}
		else {
			barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
		}

		VkPipelineStageFlags sourceStage;
		VkPipelineStageFlags destinationStage;

		if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
			barrier.srcAccessMask = 0;
			barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;

			sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
			destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
		}
		else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
			barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
			barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;

			sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
			destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
		}
		else if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
			barrier.srcAccessMask = 0;
			barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;

			sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
			destinationStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
		}
		else {
			throw std::invalid_argument("unsupported layout transition!");
		}


		vkCmdPipelineBarrier(
			commandBuffer,
			sourceStage, destinationStage,
			0,
			0, nullptr,
			0, nullptr,
			1, &barrier
		);

		endSingleTimeCommands(commandBuffer);
	}

	void copyBufferToImage(VkBuffer buffer, VkImage image, uint32_t width, uint32_t height) {
		VkCommandBuffer commandBuffer = beginSingleTimeCommands();

		VkBufferImageCopy region = {};
		region.bufferOffset = 0;
		region.bufferRowLength = 0;
		region.bufferImageHeight = 0;
		region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
		region.imageSubresource.mipLevel = 0;
		region.imageSubresource.baseArrayLayer = 0;
		region.imageSubresource.layerCount = 1;
		region.imageOffset = { 0, 0, 0 };
		region.imageExtent = {
			width,
			height,
			1
		};

		vkCmdCopyBufferToImage(commandBuffer, buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);

		endSingleTimeCommands(commandBuffer);
	}

	// 創建頂點緩衝區
	void createVertexBuffer() {

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;

		VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		//*****填充頂點緩衝區*****
		void* data;
		//將緩衝區內存映射(mapping the buffer memory)到CPU可訪問的內存中完成
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
		//將頂點數據拷貝到映射內存中
		memcpy(data, vertices.data(), (size_t)bufferSize);
		//取消映射
		vkUnmapMemory(device, stagingBufferMemory);

		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory);

		copyBuffer(stagingBuffer, vertexBuffer, bufferSize);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}

	// 創建索引緩衝區
	void createIndexBuffer() {
		VkDeviceSize bufferSize = sizeof(indices[0]) * indices.size();

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		void* data;
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
		memcpy(data, indices.data(), (size_t)bufferSize);
		vkUnmapMemory(device, stagingBufferMemory);

		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory);

		copyBuffer(stagingBuffer, indexBuffer, bufferSize);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}

	void createUniformBuffer() {
		VkDeviceSize bufferSize = sizeof(UniformBufferObject);
		createBuffer(bufferSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, uniformBuffer, uniformBufferMemory);
	}

	void createDescriptorPool() {
		//組合圖像採樣器描述符
		std::array<VkDescriptorPoolSize, 2> poolSizes = {};
		poolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		poolSizes[0].descriptorCount = 1;
		poolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
		poolSizes[1].descriptorCount = 1;

		VkDescriptorPoolCreateInfo poolInfo = {};
		poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
		poolInfo.poolSizeCount = static_cast<uint32_t>(poolSizes.size());
		poolInfo.pPoolSizes = poolSizes.data();
		poolInfo.maxSets = 1;

		if (vkCreateDescriptorPool(device, &poolInfo, nullptr, &descriptorPool) != VK_SUCCESS) {
			throw std::runtime_error("failed to create descriptor pool!");
		}
	}

	void createDescriptorSet() {
		VkDescriptorSetLayout layouts[] = { descriptorSetLayout };
		VkDescriptorSetAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
		allocInfo.descriptorPool = descriptorPool;
		allocInfo.descriptorSetCount = 1;
		allocInfo.pSetLayouts = layouts;
		if (vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate descriptor set!");
		}

		VkDescriptorBufferInfo bufferInfo = {};
		bufferInfo.buffer = uniformBuffer;
		bufferInfo.offset = 0;
		bufferInfo.range = sizeof(UniformBufferObject);

		VkDescriptorImageInfo imageInfo = {};
		imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
		imageInfo.imageView = textureImageView;
		imageInfo.sampler = textureSampler;
		std::array<VkWriteDescriptorSet, 2> descriptorWrites = {};

		descriptorWrites[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
		descriptorWrites[0].dstSet = descriptorSet;
		descriptorWrites[0].dstBinding = 0;
		descriptorWrites[0].dstArrayElement = 0;
		descriptorWrites[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		descriptorWrites[0].descriptorCount = 1;
		descriptorWrites[0].pBufferInfo = &bufferInfo;

		descriptorWrites[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
		descriptorWrites[1].dstSet = descriptorSet;
		descriptorWrites[1].dstBinding = 1;
		descriptorWrites[1].dstArrayElement = 0;
		descriptorWrites[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
		descriptorWrites[1].descriptorCount = 1;
		descriptorWrites[1].pImageInfo = &imageInfo;

		vkUpdateDescriptorSets(device, static_cast<uint32_t>(descriptorWrites.size()), descriptorWrites.data(), 0, nullptr);

	}

	//創建緩衝區
	void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer& buffer, VkDeviceMemory& bufferMemory) {

		//創建緩衝區
		VkBufferCreateInfo bufferInfo = {};
		bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
		bufferInfo.size = size;
		bufferInfo.usage = usage;
		bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
		if (vkCreateBuffer(device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
			throw std::runtime_error("failed to create buffer!");
		}

		//內存需求
		VkMemoryRequirements memRequirements;
		vkGetBufferMemoryRequirements(device, buffer, &memRequirements);

		//內存分配
		VkMemoryAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
		allocInfo.allocationSize = memRequirements.size;
		allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);

		if (vkAllocateMemory(device, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate buffer memory!");
		}
		//將內存關聯到緩衝區
		vkBindBufferMemory(device, buffer, bufferMemory, 0);
	}

	//用於從一個緩衝區拷貝數據到另一個緩衝區
	void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {
		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandPool = commandPool;
		allocInfo.commandBufferCount = 1;

		VkCommandBuffer commandBuffer;
		vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);

		VkCommandBufferBeginInfo beginInfo = {};
		beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
		beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;

		vkBeginCommandBuffer(commandBuffer, &beginInfo);

		VkBufferCopy copyRegion = {};
		copyRegion.size = size;
		vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, &copyRegion);

		vkEndCommandBuffer(commandBuffer);

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffer;

		vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
		vkQueueWaitIdle(graphicsQueue);

		vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);
	}

	VkCommandBuffer beginSingleTimeCommands() {
		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandPool = commandPool;
		allocInfo.commandBufferCount = 1;

		VkCommandBuffer commandBuffer;
		vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);

		VkCommandBufferBeginInfo beginInfo = {};
		beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
		beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;

		vkBeginCommandBuffer(commandBuffer, &beginInfo);

		return commandBuffer;
	}

	void endSingleTimeCommands(VkCommandBuffer commandBuffer) {
		vkEndCommandBuffer(commandBuffer);

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffer;

		vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
		vkQueueWaitIdle(graphicsQueue);

		vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);
	}

	uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
		VkPhysicalDeviceMemoryProperties memProperties;
		vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);

		for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
			if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
				return i;
			}
		}

		throw std::runtime_error("failed to find suitable memory type!");
	}

	void createFramebuffers() {
		swapChainFramebuffers.resize(swapChainImageViews.size());
		for (size_t i = 0; i < swapChainImageViews.size(); i++) {

			std::array<VkImageView, 2> attachments = { swapChainImageViews[i], depthImageView};

			VkFramebufferCreateInfo framebufferInfo = {};
			framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
			framebufferInfo.renderPass = renderPass;
			framebufferInfo.attachmentCount = static_cast<uint32_t>(attachments.size());
			framebufferInfo.pAttachments = attachments.data();
			framebufferInfo.width = swapChainExtent.width;
			framebufferInfo.height = swapChainExtent.height;
			framebufferInfo.layers = 1;

			if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create framebuffer!");
			}
		}
	}

	void createDescriptorSetLayout() {
		VkDescriptorSetLayoutBinding uboLayoutBinding = {};
		uboLayoutBinding.binding = 0;
		uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
		uboLayoutBinding.descriptorCount = 1;
		uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
		uboLayoutBinding.pImmutableSamplers = nullptr; // Optional

		//爲組合圖像採樣器描述符添加一個VkDescriptorSetLayoutBinding
		VkDescriptorSetLayoutBinding samplerLayoutBinding = {};
		samplerLayoutBinding.binding = 1;
		samplerLayoutBinding.descriptorCount = 1;
		samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
		samplerLayoutBinding.pImmutableSamplers = nullptr;
		//確保stageFlags正確設置,指定我們打算在片段着色器中使用組合圖像採樣器描述符。這就是片段顏色最終被確定的地方。可以在頂點着色器中使用紋理採樣
		samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;

		std::array<VkDescriptorSetLayoutBinding, 2> bindings = { uboLayoutBinding, samplerLayoutBinding };
		VkDescriptorSetLayoutCreateInfo layoutInfo = {};
		layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
		layoutInfo.bindingCount = static_cast<uint32_t>(bindings.size());
		layoutInfo.pBindings = bindings.data();


		if (vkCreateDescriptorSetLayout(device, &layoutInfo, nullptr, &descriptorSetLayout) != VK_SUCCESS) {
			throw std::runtime_error("failed to create descriptor set layout!");
		}
	}

	void createGraphicsPipeline() {
		auto vertShaderCode = readFile("shader.vert.spv");
		auto fragShaderCode = readFile("shader.frag.spv");

		VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
		VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);

		VkPipelineShaderStageCreateInfo vertShaderStageInfo = {};
		vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
		vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
		vertShaderStageInfo.module = vertShaderModule;
		vertShaderStageInfo.pName = "main";

		VkPipelineShaderStageCreateInfo fragShaderStageInfo = {};
		fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
		fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
		fragShaderStageInfo.module = fragShaderModule;
		fragShaderStageInfo.pName = "main";

		VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, fragShaderStageInfo };

		VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
		vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;

		//配置圖形管線可以接受重新定義的頂點數據的格式
		auto bindingDescription = Vertex::getBindingDescription();
		auto attributeDescriptions = Vertex::getAttributeDescriptions();

		vertexInputInfo.vertexBindingDescriptionCount = 1;
		vertexInputInfo.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
		vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
		vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();

		VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};
		inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
		inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
		inputAssembly.primitiveRestartEnable = VK_FALSE;

		VkViewport viewport = {};
		viewport.x = 0.0f;
		viewport.y = 0.0f;
		viewport.width = (float)swapChainExtent.width;
		viewport.height = (float)swapChainExtent.height;
		viewport.minDepth = 0.0f;
		viewport.maxDepth = 1.0f;

		VkRect2D scissor = {};
		scissor.offset = { 0, 0 };
		scissor.extent = swapChainExtent;

		VkPipelineViewportStateCreateInfo viewportState = {};
		viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
		viewportState.viewportCount = 1;
		viewportState.pViewports = &viewport;
		viewportState.scissorCount = 1;
		viewportState.pScissors = &scissor;

		VkPipelineRasterizationStateCreateInfo rasterizer = {};
		rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
		rasterizer.depthClampEnable = VK_FALSE;
		rasterizer.rasterizerDiscardEnable = VK_FALSE;
		rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
		rasterizer.lineWidth = 1.0f;
		rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
		rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
		rasterizer.depthBiasEnable = VK_FALSE;

		VkPipelineMultisampleStateCreateInfo multisampling = {};
		multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
		multisampling.sampleShadingEnable = VK_FALSE;
		multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
		multisampling.minSampleShading = 1.0f; // Optional
		multisampling.pSampleMask = nullptr; // Optional
		multisampling.alphaToCoverageEnable = VK_FALSE; // Optional
		multisampling.alphaToOneEnable = VK_FALSE; // Optional

		VkPipelineDepthStencilStateCreateInfo depthStencil = {};
		depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
		depthStencil.depthTestEnable = VK_TRUE;  //指定是否應該將新的深度緩衝區與深度緩衝區進行比較,以確認是否應該被丟棄
		depthStencil.depthWriteEnable = VK_TRUE; //指定通過深度測試的新的片段深度是否應該被實際寫入深度緩衝區
		depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;//指定執行保留或者丟棄片段的比較細節
		depthStencil.depthBoundsTestEnable = VK_FALSE; //depthBoundsTestEnable, minDepthBounds 和 maxDepthBounds 字段用於可選擇的優化深度綁定測試
		depthStencil.minDepthBounds = 0.0f; // Optional
		depthStencil.maxDepthBounds = 1.0f; // Optional
		depthStencil.stencilTestEnable = VK_FALSE;//用於配置模版緩衝區的操作
		depthStencil.front = {}; // Optional
		depthStencil.back = {}; // Optional

		VkPipelineColorBlendAttachmentState colorBlendAttachment = {};
		colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
		colorBlendAttachment.blendEnable = VK_FALSE;
		colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
		colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
		colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional
		colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
		colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
		colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional

		VkPipelineColorBlendStateCreateInfo colorBlending = {};
		colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
		colorBlending.logicOpEnable = VK_FALSE;
		colorBlending.logicOp = VK_LOGIC_OP_COPY;
		colorBlending.attachmentCount = 1;
		colorBlending.pAttachments = &colorBlendAttachment;
		colorBlending.blendConstants[0] = 0.0f;
		colorBlending.blendConstants[1] = 0.0f;
		colorBlending.blendConstants[2] = 0.0f;
		colorBlending.blendConstants[3] = 0.0f;

		VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
		pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
		pipelineLayoutInfo.setLayoutCount = 1; // Optional
		pipelineLayoutInfo.pSetLayouts = &descriptorSetLayout; // Optional
		pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional
		pipelineLayoutInfo.pPushConstantRanges = 0; // Optional

		if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
			throw std::runtime_error("failed to create pipeline layout!");
		}

		VkGraphicsPipelineCreateInfo pipelineInfo = {};
		pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
		pipelineInfo.stageCount = 2;
		pipelineInfo.pStages = shaderStages;

		pipelineInfo.pVertexInputState = &vertexInputInfo;
		pipelineInfo.pInputAssemblyState = &inputAssembly;
		pipelineInfo.pViewportState = &viewportState;
		pipelineInfo.pRasterizationState = &rasterizer;
		pipelineInfo.pMultisampleState = &multisampling;
		pipelineInfo.pDepthStencilState = &depthStencil; 
		pipelineInfo.pColorBlendState = &colorBlending;
		pipelineInfo.pDynamicState = nullptr; // Optional

		pipelineInfo.layout = pipelineLayout;
		pipelineInfo.renderPass = renderPass;
		pipelineInfo.subpass = 0;
		pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional
		pipelineInfo.basePipelineIndex = -1; // Optional

		if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
			throw std::runtime_error("failed to create graphics pipeline!");
		}

		vkDestroyShaderModule(device, fragShaderModule, nullptr);
		vkDestroyShaderModule(device, vertShaderModule, nullptr);
	}

	bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
		uint32_t extensionCount;
		vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);

		std::vector<VkExtensionProperties> availableExtensions(extensionCount);
		vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());

		std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());

		for (const auto& extension : availableExtensions) {
			requiredExtensions.erase(extension.extensionName);
		}

		return requiredExtensions.empty();
	}

	VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {
		if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
			return capabilities.currentExtent;
		}
		else {
			int width, height;
			glfwGetFramebufferSize(window, &width, &height);

			VkExtent2D actualExtent = {
				static_cast<uint32_t>(width),
				static_cast<uint32_t>(height)
			};
			//VkExtent2D actualExtent = { WIDTH, HEIGHT };
			actualExtent.width = std::max(capabilities.minImageExtent.width, std::min(capabilities.maxImageExtent.width, actualExtent.width));
			actualExtent.height = std::max(capabilities.minImageExtent.height, std::min(capabilities.maxImageExtent.height, actualExtent.height));

			return actualExtent;
		}
	}

	SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
		SwapChainSupportDetails details;

		vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);

		uint32_t formatCount;
		vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);

		if (formatCount != 0) {
			details.formats.resize(formatCount);
			vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data());
		}

		uint32_t presentModeCount;
		vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr);

		if (presentModeCount != 0) {
			details.presentModes.resize(presentModeCount);
			vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data());
		}

		return details;
	}

	VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {
		if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) {
			return { VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR };
		}
		for (const auto& availableFormat : availableFormats) {
			if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
				return availableFormat;
			}
		}
		return availableFormats[0];
	}

	VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR> availablePresentModes) {
		VkPresentModeKHR bestMode = VK_PRESENT_MODE_FIFO_KHR;

		for (const auto& availablePresentMode : availablePresentModes) {
			if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
				return availablePresentMode;
			}
			else if (availablePresentMode == VK_PRESENT_MODE_IMMEDIATE_KHR) {
				bestMode = availablePresentMode;
			}
		}

		return bestMode;
	}

	QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
		QueueFamilyIndices indices;

		uint32_t queueFamilyCount = 0;
		vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);

		std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
		vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());

		int i = 0;
		for (const auto& queueFamily : queueFamilies) {
			if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
				indices.graphicsFamily = i;
			}

			VkBool32 presentSupport = false;
			vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);

			if (presentSupport) {
				indices.presentFamily = i;
			}

			if (indices.isComplete()) {
				break;
			}

			i++;
		}

		return indices;
	}

	std::vector<const char*> getRequiredExtensions() {
		uint32_t glfwExtensionCount = 0;
		const char** glfwExtensions;
		glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);

		std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);

		if (enableValidationLayers) {
			extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
		}

		return extensions;
	}

	bool checkValidationLayerSupport() {
		uint32_t layerCount;
		vkEnumerateInstanceLayerProperties(&layerCount, nullptr);

		std::vector<VkLayerProperties> availableLayers(layerCount);
		vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());

		for (const char* layerName : validationLayers) {
			bool layerFound = false;

			for (const auto& layerProperties : availableLayers) {
				if (strcmp(layerName, layerProperties.layerName) == 0) {
					layerFound = true;
					break;
				}
			}

			if (!layerFound) {
				return false;
			}
		}

		return true;
	}

	static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) {
		std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;

		return VK_FALSE;
	}
};

int main() {
	HelloTriangleApplication app;

	try {
		app.run();
	}
	catch (const std::exception& e) {
		std::cerr << e.what() << std::endl;
		return EXIT_FAILURE;
	}

	return EXIT_SUCCESS;
}
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章