第十二章 無窮級數

本章先討論常數項級數,介紹無窮級數的一些基本內容,然後討論函數項級數,着重討論如何將函數展開成冪級數和三角級數的問題。——高等數學同濟版

習題12-1 常數項級數的概念和性質

  本節主要介紹了常數項級數的概念和性質。

3.判定下列級數的收斂性:

(3)13+13+133++13n+;\cfrac{1}{3}+\cfrac{1}{\sqrt{3}}+\cfrac{1}{\sqrt[3]{3}}+\cdots+\cfrac{1}{\sqrt[n]{3}}+\cdots;

  此級數的一般項un=13nu_n=\cfrac{1}{\sqrt[n]{3}},有limnun=limn(13)1n=1\lim\limits_{n\to\infty}u_n=\lim\limits_{n\to\infty}\left(\cfrac{1}{3}\right)^{\frac{1}{n}}=1,不滿足級數收斂的必要條件,故該級數發散。(這道題主要利用了收斂級數的必要條件求解

4.利用柯西審斂原理判定下列級數的收斂性:

(1)n=1(1)n+1n;\sum^{\infty}\limits_{n=1}\cfrac{(-1)^{n+1}}{n};


sn+psn=un+1+un+2+un+3++un+p=(1)n+2n+1+(1)n+3n+2+(1)n+4n+3++(1)n+p+1n+p=1n+11n+2+1n+3+(1)p1n+p. \begin{aligned} |s_{n+p}-s_n|&=|u_{n+1}+u_{n+2}+u_{n+3}+\cdots+u_{n+p}|\\ &=\left|\cfrac{(-1)^{n+2}}{n+1}+\cfrac{(-1)^{n+3}}{n+2}+\cfrac{(-1)^{n+4}}{n+3}+\cdots+\cfrac{(-1)^{n+p+1}}{n+p}\right|\\ &=\left|\cfrac{1}{n+1}-\cfrac{1}{n+2}+\cfrac{1}{n+3}-\cdots+\cfrac{(-1)^{p-1}}{n+p}\right|. \end{aligned}
  由於
1n+11n+2+1n+3+(1)p1n+p=(1n+11n+2)+(1n+31n+4)++{1n+p,p爲奇數,1n+p11n+p,p爲偶數. \begin{aligned} &\cfrac{1}{n+1}-\cfrac{1}{n+2}+\cfrac{1}{n+3}-\cdots+\cfrac{(-1)^{p-1}}{n+p}\\ =&\left(\cfrac{1}{n+1}-\cfrac{1}{n+2}\right)+\left(\cfrac{1}{n+3}-\cfrac{1}{n+4}\right)+\cdots+\begin{cases}\cfrac{1}{n+p},&p\text{爲奇數,}\\\cfrac{1}{n+p-1}-\cfrac{1}{n+p},&p\text{爲偶數.}\end{cases} \end{aligned}
  故
1n+11n+2+1n+3+(1)p1n+p>0,pZ+. \cfrac{1}{n+1}-\cfrac{1}{n+2}+\cfrac{1}{n+3}-\cdots+\cfrac{(-1)^{p-1}}{n+p}>0,\forall p\in\bold{Z}^+.
  於是,當pp爲奇數時,
sn+psn=1n+1(1n+21n+3)(1n+p11n+p)<1n+1. |s_{n+p}-s_n|=\cfrac{1}{n+1}-\left(\cfrac{1}{n+2}-\cfrac{1}{n+3}\right)-\cdots\left(\cfrac{1}{n+p-1}-\cfrac{1}{n+p}\right)<\cfrac{1}{n+1}.
  當pp爲偶數時,
sn+psn=1n+1(1n+21n+3)(1n+p21n+p1)1n+p<1n+1. |s_{n+p}-s_n|=\cfrac{1}{n+1}-\left(\cfrac{1}{n+2}-\cfrac{1}{n+3}\right)-\cdots\left(\cfrac{1}{n+p-2}-\cfrac{1}{n+p-1}\right)-\cfrac{1}{n+p}<\cfrac{1}{n+1}.
  因此,對任意給定的正數ε\varepsilon,取正整數N1ε\bm{N}\geqslant\cfrac{1}{\varepsilon},則當n>Nn>\bm{N}時,對任何正整數pp,都有
sn+psn<1n+1<1n<ε. |s_{n+p}-s_n|<\cfrac{1}{n+1}<\cfrac{1}{n}<\varepsilon.
  根據柯西收斂原理知,級數收斂。(這道題主要利用了奇偶兩種情況討論求解

(2)1+1213+14+1516++13n2+13n113n+;1+\cfrac{1}{2}-\cfrac{1}{3}+\cfrac{1}{4}+\cfrac{1}{5}-\cfrac{1}{6}+\cdots+\cfrac{1}{3n-2}+\cfrac{1}{3n-1}-\cfrac{1}{3n}+\cdots;

  當nn33的倍數時,如果取p=3np=3n,則必有
sn+psn=1n+1+(1n+21n+3)+1n+4+(1n+51n+6)++14n2+(14n114n)>1n+1+1n+4++14n2>14n+14n++14nn=14. \begin{aligned} |s_{n+p}-s_n|&=\left|\cfrac{1}{n+1}+\left(\cfrac{1}{n+2}-\cfrac{1}{n+3}\right)+\cfrac{1}{n+4}+\left(\cfrac{1}{n+5}-\cfrac{1}{n+6}\right)+\cdots+\cfrac{1}{4n-2}+\left(\cfrac{1}{4n-1}-\cfrac{1}{4n}\right)\right|\\ &>\cfrac{1}{n+1}+\cfrac{1}{n+4}+\cdots+\cfrac{1}{4n-2}>\underbrace{\cfrac{1}{4n}+\cfrac{1}{4n}+\cdots+\cfrac{1}{4n}}_{n\text{個}}=\cfrac{1}{4}. \end{aligned}
  於是對ε0=14\varepsilon_0=\cfrac{1}{4},不論N\bm{N}爲何正整數,當n>Nn>\bm{N}nn33的倍數,且當p=3np=3n時,就有
sn+psn>ε0. |s_{n+p}-s_n|>\varepsilon_0.
  根據柯西收斂原理知,級數發散。(這道題利用了收斂級數的定義求解

習題12-2 常數項級數的審斂法

  本節主要介紹了常數項級數的審斂法的求解。

2.用比值審斂法判定下列級數的收斂性:

(3)n=12nn!nn;\sum^{\infty}\limits_{n=1}\cfrac{2^n\cdot n!}{n^n};

  因limnun+1un=limn2n+1(n+1)!(n+1)n+1/2nn!nn=limn2(nn+1)n=2e<1\lim\limits_{n\to\infty}\cfrac{u_{n+1}}{u_n}=\lim\limits_{n\to\infty}\cfrac{2^{n+1}\cdot (n+1)!}{(n+1)^{n+1}}\biggm/\cfrac{2^n\cdot n!}{n^n}=\lim\limits_{n\to\infty}2\left(\cfrac{n}{n+1}\right)^n=\cfrac{2}{e}<1,故級數收斂。(這道題利用了比值審斂法求解

習題12-3 冪級數

  本節主要介紹了冪級數的相關計算。

2.利用逐項求導或逐項積分,求下列級數的和函數:

(2)n=1x4n+14n+1;\sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1};

  不難求出此級數的收斂半徑爲11。當1<x<1-1<x<1時,
(n=1x4n+14n+1)=n=1(x4n+14n+1)=n=1x4n=x41x4. \left(\sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1}\right)'=\sum^{\infty}\limits_{n=1}\left(\cfrac{x^{4n+1}}{4n+1}\right)'=\sum^{\infty}\limits_{n=1}x^{4n}=\cfrac{x^4}{1-x^4}.
  在上式兩端分別從00xx積分,並由於n=1x4n+14n+1\sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1}x=0x=0處收斂於00,故得
n=1x4n+14n+1=0xx41x4dx=0x(1+1211+x2+1211x2)dx=14ln1+x1x+12arctanxx. \begin{aligned} \sum^{\infty}\limits_{n=1}\cfrac{x^{4n+1}}{4n+1}&=\displaystyle\int^x_0\cfrac{x^4}{1-x^4}\mathrm{d}x\\ &=\displaystyle\int^x_0\left(-1+\cfrac{1}{2}\cdot\cfrac{1}{1+x^2}+\cfrac{1}{2}\cdot\cfrac{1}{1-x^2}\right)\mathrm{d}x\\ &=\cfrac{1}{4}\ln\cfrac{1+x}{1-x}+\cfrac{1}{2}\arctan x-x. \end{aligned}
  又原級數在x=±1x=\pm1處發散,故它的和函數
s(x)=14ln1+x1x+12arctanxx(1<x<1). s(x)=\cfrac{1}{4}\ln\cfrac{1+x}{1-x}+\cfrac{1}{2}\arctan x-x\quad(-1<x<1).
這道題主要利用了逐項求導求解

習題12-4 函數展開成冪級數

  本節主要介紹了函數在某區間的冪級數展開。(部分函數展開式見附錄一,傳送門在這裏

2.將下列函數展開成的冪級數,並求展開式成立的區間:

(2)ln(a+x)(a>0);\ln(a+x)(a>0);

  ln(a+x)=lna+ln(1+xa)\ln(a+x)=\ln a+\ln(1+\cfrac{x}{a}),利用
ln(1+x)=n=0(1)n1nxn,x(1,+1]. \ln(1+x)=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^{n-1}}{n}x^n,\quad x\in(-1,+1].
  得
ln(a+x)=n=0(1)n1n(xa)n,x(a,+a]. \ln(a+x)=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^{n-1}}{n}\left(\cfrac{x}{a}\right)^n,\quad x\in(-a,+a].
這道題主要利用了常用冪級數展開求解

(6)x1+x2.\cfrac{x}{\sqrt{1+x^2}}.

解一  利用1+x=1+12x124x2+13246x3,x[1,1]\sqrt{1+x}=1+\cfrac{1}{2}x-\cfrac{1}{2\cdot4}x^2+\cfrac{1\cdot3}{2\cdot4\cdot6}x^3-\cdots,x\in[-1,1],並因爲0xx1+x2dx=1+x21\displaystyle\int^x_0\cfrac{x}{\sqrt{1+x^2}}\mathrm{d}x=\sqrt{1+x^2}-1,以x2x^2替換上面冪級數中的xx,得
0xx1+x2dx=1+x21=12x2124x4+13246x6+(1)n1135(2n3)246(2n2)x2n1+. \begin{aligned} \displaystyle\int^x_0\cfrac{x}{\sqrt{1+x^2}}\mathrm{d}x&=\sqrt{1+x^2}-1\\ &=\cfrac{1}{2}x^2-\cfrac{1}{2\cdot4}x^4+\cfrac{1\cdot3}{2\cdot4\cdot6}x^6-\cdots+(-1)^{n-1}\cdot\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-3)}{2\cdot4\cdot6\cdot\cdots\cdot(2n-2)}x^{2n-1}+\cdots. \end{aligned}
  在(1,1)(-1,1)內將上式兩端對xx求導,得
x1+x2=x12x31324x5+13246x6+(1)n1135(2n3)246(2n2)x2n1+=x+n=2(1)n1135(2n3)246(2n2)x2n1=x+n=1(1)n2(2n)!(n!)2(x2)2n+1,x(1,1). \begin{aligned} \cfrac{x}{\sqrt{1+x^2}}&=x-\cfrac{1}{2}x^3-\cfrac{1\cdot3}{2\cdot4}x^5+\cfrac{1\cdot3}{2\cdot4\cdot6}x^6-\cdots+(-1)^{n-1}\cdot\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-3)}{2\cdot4\cdot6\cdot\cdots\cdot(2n-2)}x^{2n-1}+\cdots\\ &=x+\sum^{\infty}\limits_{n=2}(-1)^{n-1}\cdot\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-3)}{2\cdot4\cdot6\cdot\cdots\cdot(2n-2)}x^{2n-1}\\ &=x+\sum^{\infty}\limits_{n=1}(-1)^n\cdot\cfrac{2(2n)!}{(n!)^2}\left(\cfrac{x}{2}\right)^{2n+1},\quad x\in(-1,1). \end{aligned}
  在x=±1x=\pm1處上式右端的級數均收斂且函數x1+x2\cfrac{x}{\sqrt{1+x^2}}連續,故
x1+x2=x+n=1(1)n2(2n)!(n!)2(x2)2n+1,x[1,1]. \cfrac{x}{\sqrt{1+x^2}}=x+\sum^{\infty}\limits_{n=1}(-1)^n\cdot\cfrac{2(2n)!}{(n!)^2}\left(\cfrac{x}{2}\right)^{2n+1},\quad x\in[-1,1].
這道題主要利用了代換的方法求解

解二  將x2x^2替換展開式
11+x=1+n=1(1)n135(2n1)246(2n)xn,x[1,1]. \cfrac{1}{\sqrt{1+x}}=1+\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2\cdot4\cdot6\cdot\cdots\cdot(2n)}x^n,\quad x\in[-1,1].
  中的xx,得
11+x2=1+n=1(1)n135(2n1)246(2n)x2n,x[1,1]. \cfrac{1}{\sqrt{1+x^2}}=1+\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2\cdot4\cdot6\cdot\cdots\cdot(2n)}x^{2n},\quad x\in[-1,1].
  從而得
11+x2=x+n=1(1)n135(2n1)246(2n)x2n+1=x+n=1(1)n2(2n)!(n!)2(x2)2n+1,x[1,1]. \begin{aligned} \cfrac{1}{\sqrt{1+x^2}}&=x+\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2\cdot4\cdot6\cdot\cdots\cdot(2n)}x^{2n+1}\\ &=x+\sum^{\infty}\limits_{n=1}(-1)^n\cdot\cfrac{2(2n)!}{(n!)^2}\left(\cfrac{x}{2}\right)^{2n+1},\quad x\in[-1,1]. \end{aligned}
這道題主要利用了代換的方法求解

3.將下列函數展開成x1x-1的冪級數,並求展開式成立的區間:

(1)x3;\sqrt{x^3};

  當m>0m>0時,因
(1+x)m=1+ma+m(m1)2!x2++m(m1)(mn+1)n!xn+,x[1,1]. (1+x)^m=1+ma+\cfrac{m(m-1)}{2!}x^2+\cdots+\cfrac{m(m-1)\cdots(m-n+1)}{n!}x^n+\cdots,\quad x\in[-1,1].
  而
x3=[1+(x1)]32. \sqrt{x^3}=[1+(x-1)]^{\frac{3}{2}}.
  在以上二項展開式中取m=32m=\cfrac{3}{2},並用x1x-1替換其中的xx,得
x3=1+32(x1)+12!32(321)(x1)2++1n!32(321)(32n+1)(x1)n+=1+32(x1)+n=03(1)n135(2n1)2n+2(n+2)!(x1)n+2=1+32(x1)+n=1(1)n2(2n)!(n!)23(n+1)(n+2)2n(x12)n+2,x[0,2]. \begin{aligned} \sqrt{x^3}&=1+\cfrac{3}{2}(x-1)+\cfrac{1}{2!}\cdot\cfrac{3}{2}\left(\cfrac{3}{2}-1\right)(x-1)^2+\cdots+\cfrac{1}{n!}\cfrac{3}{2}\left(\cfrac{3}{2}-1\right)\cdot\cdots\cdot\left(\cfrac{3}{2}-n+1\right)(x-1)^n+\cdots\\ &=1+\cfrac{3}{2}(x-1)+\sum^{\infty}\limits_{n=0}\cfrac{3\cdot(-1)^n1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2^{n+2}(n+2)!}(x-1)^{n+2}\\ &=1+\cfrac{3}{2}(x-1)+\sum^{\infty}\limits_{n=1}(-1)^n\cfrac{2(2n)!}{(n!)^2}\cdot\cfrac{3}{(n+1)(n+2)2^n}\left(\cfrac{x-1}{2}\right)^{n+2},\quad x\in[0,2]. \end{aligned}
這道題主要利用了冪級數的直接展開求解

習題12-5 函數的冪級數展開式的應用

  本節主要介紹了函數的冪級數展開式的應用。(本節考研考綱未明確提出考察)

習題12-6 函數項級數的一致收斂性及一致收斂級數的基本性質

  本節主要介紹了級數的一致收斂性。(本節考研考綱未明確提出考察)

習題12-7 傅里葉級數

從本節開始,我們討論由三角函數組成的函數項級數,即所謂三角級數,着重研究如何把函數展開成三角級數。——高等數學同濟版

  本節主要傅里葉級數的概念和基本級計算。

7.設周期函數f(x)f(x)的週期爲2π2\pi。證明:

(1)若f(xπ)=f(x)f(x-\pi)=-f(x),則f(x)f(x)的傅里葉係數a0=0,a2k=0,b2k=0(k=1,2,)a_0=0,a_{2k}=0,b_{2k}=0(k=1,2,\cdots)


a0=1π[π0f(x)dx+0πf(x)dx]=1π[π0f(x)dx+0π[f(xπ)]dx]. \begin{aligned} a_0&=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\mathrm{d}x+\displaystyle\int^\pi_0f(x)\mathrm{d}x\right]\\ &=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\mathrm{d}x+\displaystyle\int^\pi_0[-f(x-\pi)]\mathrm{d}x\right]. \end{aligned}
  在上式的第二個積分中令xπ=ux-\pi=u,則
a0=1π[π0f(x)dxπ0f(u)du]=0. a_0=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\mathrm{d}u\right]=0.
  同理可得
an=1π[π0f(x)cosnxdx+0πf(x)cosnxdx]=1π[π0f(x)cosnxdx+0π[f(xπ)]cosnxdx]=1π[π0f(x)cosnxdxπ0f(u)cos(nπ+nu)du]. \begin{aligned} a_n&=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos nx\mathrm{d}x+\displaystyle\int^\pi_0f(x)\cos nx\mathrm{d}x\right]\\ &=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos nx\mathrm{d}x+\displaystyle\int^\pi_0[-f(x-\pi)]\cos nx\mathrm{d}x\right]\\ &=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos nx\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\cos(n\pi+nu)\mathrm{d}u\right]. \end{aligned}
  及
bn=1π[π0f(x)sinnxdxπ0f(u)sin(nπ+nu)du]. b_n=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\sin nx\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\sin(n\pi+nu)\mathrm{d}u\right].
  當n=2k(kN)n=2k(k\in\bold{N}^*)時,cos(nπ+nu)=cosnu,sin(nπ+nu)=sinnu\cos(n\pi+nu)=\cos nu,\sin(n\pi+nu)=\sin nu,於是有
a2k=1π[π0f(x)cos2kxdxπ0f(u)cos2kudu]=0. a_{2k}=\cfrac{1}{\pi}\left[\displaystyle\int^0_{-\pi}f(x)\cos 2kx\mathrm{d}x-\displaystyle\int^0_{-\pi}f(u)\cos2ku\mathrm{d}u\right]=0.
  及
b2k=0.(kN). b_{2k}=0.\quad(k\in\bold{N}^*).
(這道題主要利用了傅里葉級數證明

習題12-8 一般周期函數的傅里葉級數

  本節主要介紹了一般周期函數的傅里葉級數的計算方法。

總習題十二

5.設級數n=1un\sum^\infty\limits_{n=1}u_n收斂,且limnvnun=1\lim\limits_{n\to\infty}\cfrac{v_n}{u_n}=1。問級數n=1vn\sum^\infty\limits_{n=1}v_n是否也收斂?試說明理由。

  級數n=1vn\sum^\infty\limits_{n=1}v_n不一定收斂。
  當n=1un\sum^\infty\limits_{n=1}u_n是正項級數時,在題設條件下n=1vn\sum^\infty\limits_{n=1}v_n必定收斂。因爲limnvnun=1\lim\limits_{n\to\infty}\cfrac{v_n}{u_n}=1。根據收斂數列的保號性知,存在正整數NN,當nNn\geqslant N時有vnun>0\cfrac{v_n}{u_n}>0,即有vn>0v_n>0。於是,按正項級數的比較審斂法知n=Nvn\sum^\infty\limits_{n=N}v_n收斂,即n=1vn\sum^\infty\limits_{n=1}v_n收斂。
  當n=1un\sum^\infty\limits_{n=1}u_n不是正項級數時,n=1vn\sum^\infty\limits_{n=1}v_n可能不收斂。例如:若un=(1)n1n,vn=(1)n1n+1nu_n=\cfrac{(-1)^{n-1}}{\sqrt{n}},v_n=\cfrac{(-1)^{n-1}}{\sqrt{n}}+\cfrac{1}{n},則n=1un\sum^\infty\limits_{n=1}u_n收斂,且limnvnun=limn[1+(1)n1n]=1\lim\limits_{n\to\infty}\cfrac{v_n}{u_n}=\lim\limits_{n\to\infty}\left[1+\cfrac{(-1)^{n-1}}{\sqrt{n}}\right]=1,然而n=1vn\sum^\infty\limits_{n=1}v_n發散。(這道題主要利用了反例證明

6.討論下列級數的絕對收斂性與條件收斂性:

(3)n=1(1)nlnn+1n;\sum^\infty\limits_{n=1}(-1)^n\ln\cfrac{n+1}{n};


un=(1)nlnn+1n,limnun1n=limnnln(1+1n)=limnln(1+1n)n=1. u_n=(-1)^n\ln\cfrac{n+1}{n},\\ \lim\limits_{n\to\infty}\cfrac{|u_n|}{\cfrac{1}{n}}=\lim\limits_{n\to\infty}n\cdot\ln\left(1+\cfrac{1}{n}\right)=\lim\limits_{n\to\infty}\ln\left(1+\cfrac{1}{n}\right)^n=1.
  而級數n=11n\sum^\infty\limits_{n=1}\cfrac{1}{n}發散,由極限形式的比較審斂法知n=1un\sum^\infty\limits_{n=1}|u_n|發散。
  而n=1un\sum^\infty\limits_{n=1}u_n是交錯級數且滿足萊布尼茲定理的條件,因而收斂,故該級數條件收斂。
這道題主要利用了等價無窮小代換求解

7.求下列極限:

(1)limn1nk=1n13k(1+1k)k2;\lim\limits_{n\to\infty}\cfrac{1}{n}\sum^n\limits_{k=1}\cfrac{1}{3^k}\left(1+\cfrac{1}{k}\right)^{k^2};

  由於sn=k=1n13k(1+1k)k2s_n=\sum^n\limits_{k=1}\cfrac{1}{3^k}\left(1+\cfrac{1}{k}\right)^{k^2}是級數n=113n(1+1n)n2\sum^\infty\limits_{n=1}\cfrac{1}{3^n}\left(1+\cfrac{1}{n}\right)^{n^2}的部分和,而由正項級數的根植審斂法,當nn\to\infty時,
13n(1+1n)n2n=13(1+1n)ne3<1. \sqrt[n]{\cfrac{1}{3^n}\left(1+\cfrac{1}{n}\right)^{n^2}}=\cfrac{1}{3}\left(1+\cfrac{1}{n}\right)^n\to\cfrac{e}{3}<1.
  因此級數n=113n(1+1n)n2\sum^\infty\limits_{n=1}\cfrac{1}{3^n}\left(1+\cfrac{1}{n}\right)^{n^2}收斂,於是部分和sns_n有界,從而
limn=snn=0. \lim\limits_{n\to\infty}=\cfrac{s_n}{n}=0.
這道題主要利用了級數的收斂性求解

8.求下列冪級數的收斂區間:

(2)n=1(1+1n)n2xn;\sum^\infty\limits_{n=1}\left(1+\cfrac{1}{n}\right)^{n^2}x^n;

  un=anxn,an=(1+1n)n2u_n=a_nx^n,a_n=\left(1+\cfrac{1}{n}\right)^{n^2}。因
limnan+1an=limn(n+2n+1)(n+1)2(n+1n)n2=limn(1+1n+1)2n+1(1+1n2+2n)n2=e2e=e(limnann=limn(1+1n)n=e). \lim\limits_{n\to\infty}\cfrac{|a_{n+1}|}{|a_n|}=\lim\limits_{n\to\infty}\cfrac{\left(\cfrac{n+2}{n+1}\right)^{(n+1)^2}}{\left(\cfrac{n+1}{n}\right)^{n^2}}=\lim\limits_{n\to\infty}\cfrac{\left(1+\cfrac{1}{n+1}\right)^{2n+1}}{\left(1+\cfrac{1}{n^2+2n}\right)^{n^2}}=\cfrac{e^2}{e}=e\\ (\text{或}\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\lim\limits_{n\to\infty}\left(1+\cfrac{1}{n}\right)^n=e).
  故收斂半徑爲R=1eR=\cfrac{1}{e},收斂區間爲(1e,1e)\left(-\cfrac{1}{e},\cfrac{1}{e}\right)。(這道題主要利用了審斂法求解

9.求下列冪級數的和函數:

(3)n=1n(x1)n;\sum^\infty\limits_{n=1}n(x-1)^n;

  令x1=tx-1=t,冪級數n=1ntn\sum^\infty\limits_{n=1}nt^n的收斂域爲(1,1)(-1,1)。記其和函數爲φ(t)\varphi(t),即有
φ(t)=n=1ntn=tn=1ntn1=t(n=1tn)=t(t1t)=t(1t)2,t(1,1). \begin{aligned} \varphi(t)&=\sum^\infty\limits_{n=1}nt^n=t\sum^\infty\limits_{n=1}nt^{n-1}=t\left(\sum^\infty\limits_{n=1}t^n\right)'\\ &=t\left(\cfrac{t}{1-t}\right)'=\cfrac{t}{(1-t)^2},\quad t\in(-1,1). \end{aligned}
  於是原級數的和函數
s(x)=φ(x1)=x1(2x)2,x(0,2). s(x)=\varphi(x-1)=\cfrac{x-1}{(2-x)^2},\quad x\in(0,2).
這道題主要利用了換元的方法求解

(4)n=1xnn(n+1).\sum^\infty\limits_{n=1}\cfrac{x^n}{n(n+1)}.

  un(x)=anxn,an=1n(n+1)u_n(x)=a_nx^n,a_n=\cfrac{1}{n(n+1)}。由limnan+1an=limnnn+2=1\lim\limits_{n\to\infty}\cfrac{|a_{n+1}|}{|a_n|}=\lim\limits_{n\to\infty}\cfrac{n}{n+2}=1,得冪級數的收斂半徑R=1R=1。當x=±1x=\pm1時,級數n=11n(n+1)\sum^\infty\limits_{n=1}\cfrac{1}{n(n+1)}n=1(1)nn(n+1)\sum^\infty\limits_{n=1}\cfrac{(-1)^n}{n(n+1)}均收斂,故冪級數的收斂域爲[1,1][-1,1]
  設和函數爲s(x)s(x),即s(x)=n=1xnn(n+1)s(x)=\sum^\infty\limits_{n=1}\cfrac{x^n}{n(n+1)}
  當x=0x=0時,s(0)=0s(0)=0
  當0<x<10<|x|<1時,
xs(x)=n=1xn+1n(n+1). xs(x)=\sum^\infty\limits_{n=1}\cfrac{x^{n+1}}{n(n+1)}.
  上式兩端對xx求導,得
[xs(x)]=n=1xnn. [xs(x)]'=\sum^\infty\limits_{n=1}\cfrac{x^n}{n}.
  再求導,得
[xs(x)]=n=1xn1=11x. [xs(x)]''=\sum^\infty\limits_{n=1}x^{n-1}=\cfrac{1}{1-x}.
  注意到[xs(x)]x=0=0[xs(x)]'\biggm\vert_{x=0}=0,上式兩端從00xx積分,得
[xs(x)]=0xdx1x=ln(1x). [xs(x)]'=\displaystyle\int^x_0\cfrac{\mathrm{d}x}{1-x}=-\ln(1-x).
  再積分,得
xs(x)=0xln(1x)dx=(1x)ln(1x)+x. xs(x)=-\displaystyle\int^x_0\ln(1-x)\mathrm{d}x=(1-x)\ln(1-x)+x.
  於是
s(x)=1xxln(1x)+1,x(1,0)(0,1). s(x)=\cfrac{1-x}{x}\ln(1-x)+1,\quad x\in(-1,0)\cup(0,1).
  由於冪級數在x=±1x=\pm1處收斂,故和函數分別在x=±1x=\pm1處左連續與右連續,於是s(1)=lims1s(x)=lims11xxln(1x)+1=1s(1)=\lim\limits_{s\to1^-}s(x)=\lim\limits_{s\to1^-}\cfrac{1-x}{x}\ln(1-x)+1=1
  因此
s(x)={1+(1x1)ln(1x),x[1,0)(0,1),0,x=0,1x=1. s(x)=\begin{cases} 1+\left(\cfrac{1}{x}-1\right)\ln(1-x),&x\in[-1,0)\cup(0,1),\\ 0,&x=0,\\ 1&x=1. \end{cases}
這道題主要利用了逐項積分和逐項求導求解

10.求下列數項級數的和:

(1)n=1n2n!;\sum^\infty\limits_{n=1}\cfrac{n^2}{n!};

  利用n=1n2n!=ex,x(,+)\sum^\infty\limits_{n=1}\cfrac{n^2}{n!}=e^x,x\in(-\infty,+\infty),取x=1x=1,有n=11n!=e\sum^\infty\limits_{n=1}\cfrac{1}{n!}=e
  又
n=1n2n!=n=1n(n1)!=n=0n+1n!=n=0nn!+n=0n2n!. \sum^\infty\limits_{n=1}\cfrac{n^2}{n!}=\sum^\infty\limits_{n=1}\cfrac{n}{(n-1)!}=\sum^\infty\limits_{n=0}\cfrac{n+1}{n!}=\sum^\infty\limits_{n=0}\cfrac{n}{n!}+\sum^\infty\limits_{n=0}\cfrac{n^2}{n!}.
  其中
n=0nn!=n=1nn!=n=11(n1)!=n=01n!. \sum^\infty\limits_{n=0}\cfrac{n}{n!}=\sum^\infty\limits_{n=1}\cfrac{n}{n!}=\sum^\infty\limits_{n=1}\cfrac{1}{(n-1)!}=\sum^\infty\limits_{n=0}\cfrac{1}{n!}.
  故
n=1n2n!=2n=01n!=2e. \sum^\infty\limits_{n=1}\cfrac{n^2}{n!}=2\sum^\infty\limits_{n=0}\cfrac{1}{n!}=2e.
這道題主要利用了分項的方法求解

(2)n=0(1)nn+1(2n+1)!.\sum^\infty\limits_{n=0}(-1)^n\cfrac{n+1}{(2n+1)!}.

  因n=0(1)n(2n+1)!x2n+1=sinx,n=0(1)n(2n)!x2n=cosx,x(,+)\sum^\infty\limits_{n=0}\cfrac{(-1)^n}{(2n+1)!}x^{2n+1}=\sin x,\sum^\infty\limits_{n=0}\cfrac{(-1)^n}{(2n)!}x^{2n}=\cos x,x\in(-\infty,+\infty),故取x=1x=1,有
n=0(1)n(2n+1)!=sin1,n=0(1)n(2n)!=cos1. \sum^\infty\limits_{n=0}\cfrac{(-1)^n}{(2n+1)!}=\sin1,\qquad\sum^\infty\limits_{n=0}\cfrac{(-1)^n}{(2n)!}=\cos1.
  於是
n=0(1)nn+1(2n+1)!=12n=0(1)n2n+2(2n+1)!=12[n=0(1)n2n+1(2n+1)!+n=0(1)n1(2n+1)!]=12[n=0(1)n(2n)!+n=0(1)n(2n+1)!]=12(cos1+sin1). \begin{aligned} \sum^\infty\limits_{n=0}(-1)^n\cfrac{n+1}{(2n+1)!}&=\cfrac{1}{2}\sum^\infty\limits_{n=0}(-1)^n\cfrac{2n+2}{(2n+1)!}\\ &=\cfrac{1}{2}\left[\sum^\infty\limits_{n=0}(-1)^n\cfrac{2n+1}{(2n+1)!}+\sum^\infty\limits_{n=0}(-1)^n\cfrac{1}{(2n+1)!}\right]\\ &=\cfrac{1}{2}\left[\sum^\infty\limits_{n=0}\cfrac{(-1)^n}{(2n)!}+\sum^\infty\limits_{n=0}\cfrac{(-1)^n}{(2n+1)!}\right]\\ &=\cfrac{1}{2}(\cos1+\sin1). \end{aligned}
這道題主要利用了湊整的方法求解

11.將下列函數展開成的冪級數:

(1)ln(x+x2+1);\ln(x+\sqrt{x^2+1});

  因
[ln(x+x2+1)]=1x2+1=(1+x2)12. [\ln(x+\sqrt{x^2+1})]'=\cfrac{1}{\sqrt{x^2+1}}=(1+x^2)^{-\frac{1}{2}}.
  而
(1+x2)12=1+n=1(1)n(2n1)!!(2n)!!x2n,x[1,1]. (1+x^2)^{-\frac{1}{2}}=1+\sum^\infty\limits_{n=1}(-1)^n\cfrac{(2n-1)!!}{(2n)!!}x^{2n},\qquad x\in[-1,1].
  故
ln(x+x2+1)=0x(1+x2)12dx=0x[1+n=1(1)n(2n1)!!(2n)!!x2n]dx=x+n=1(1)n(2n1)!!(2n)!!(2n+1)x2n+1,x[1,1]. \begin{aligned} \ln(x+\sqrt{x^2+1})&=\displaystyle\int^x_0(1+x^2)^{-\frac{1}{2}}\mathrm{d}x\\ &=\displaystyle\int^x_0\left[1+\sum^\infty\limits_{n=1}(-1)^n\cfrac{(2n-1)!!}{(2n)!!}x^{2n}\right]\mathrm{d}x\\ &=x+\sum^\infty\limits_{n=1}(-1)^n\cfrac{(2n-1)!!}{(2n)!!(2n+1)}x^{2n+1},\qquad x\in[-1,1]. \end{aligned}
這道題主要利用了常用冪級數的展開求解

寫在最後

  如果覺得文章不錯就點個贊吧。另外,如果有不同的觀點,歡迎留言或私信。
  部分冪級數展開式見附錄一,傳送門在這裏
   歡迎非商業轉載,轉載請註明出處。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章