張宇1000題高等數學 第九章 一元函數積分學的計算

目錄

BB

5.π2π23exsin2x1+exdx=\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cfrac{3e^x\sin^2x}{1+e^x}\mathrm{d}x=______。


π2π23exsin2x1+exdx=x=tπ2π23etsin2t1+etdt=3π2π2sin2t1+etdt=32π2π2sin2tdt=312π2=3π4. \begin{aligned} \displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cfrac{3e^x\sin^2x}{1+e^x}\mathrm{d}x&\xlongequal{x=-t}\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cfrac{3e^{-t}\sin^2t}{1+e^{-t}}\mathrm{d}t=3\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cfrac{\sin^2t}{1+e^{t}}\mathrm{d}t\\ &=\cfrac{3}{2}\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\sin^2t\mathrm{d}t=3\cdot\cfrac{1}{2}\cdot\cfrac{\pi}{2}=\cfrac{3\pi}{4}. \end{aligned}
這道題主要利用了換元積分法求解

9.計算下列積分。

(2)0+xe3x(1+e3x)2dx;\displaystyle\int^{+\infty}_0\cfrac{xe^{-3x}}{(1+e^{-3x})^2}\mathrm{d}x;


0+xe3x(1+e3x)2dx=0+xe3x(1+e3x)2dx=130+xd(11+e3x)=xe3x1+e3x0++130+11+e3xdx=130+e3xe3x(1+e3x)dx=19lne3xe3x+10+=19ln2. \begin{aligned} \displaystyle\int^{+\infty}_0\cfrac{xe^{-3x}}{(1+e^{-3x})^2}\mathrm{d}x&=\displaystyle\int^{+\infty}_0\cfrac{xe^{3x}}{(1+e^{3x})^2}\mathrm{d}x=-\cfrac{1}{3}\displaystyle\int^{+\infty}_0x\mathrm{d}\left(\cfrac{1}{1+e^{3x}}\right)\\ &=-\cfrac{xe^{3x}}{1+e^{3x}}\biggm\vert^{+\infty}_0+\cfrac{1}{3}\displaystyle\int^{+\infty}_0\cfrac{1}{1+e^{3x}}\mathrm{d}x\\ &=\cfrac{1}{3}\displaystyle\int^{+\infty}_0\cfrac{e^{3x}}{e^{3x}(1+e^{3x})}\mathrm{d}x\\ &=\cfrac{1}{9}\ln\cfrac{e^{3x}}{e^{3x}+1}\biggm\vert^{+\infty}_0=\cfrac{1}{9}\ln2. \end{aligned}
這道題主要利用了分部積分法求解

(6)dx2+cosx;\displaystyle\int\cfrac{\mathrm{d}x}{2+\cos x};

  令t=tanx2t=\tan\cfrac{x}{2},則
dx2+cosx=12+1t21+t221+t2dt=23+t2dt=2311+(t3)2dt=23arctant3+C. \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{2+\cos x}&=\displaystyle\int\cfrac{1}{2+\cfrac{1-t^2}{1+t^2}}\cdot\cfrac{2}{1+t^2}\mathrm{d}t=\displaystyle\int\cfrac{2}{3+t^2}\mathrm{d}t\\ &=\cfrac{2}{3}\displaystyle\int\cfrac{1}{1+\left(\cfrac{t}{\sqrt{3}}\right)^2}\mathrm{d}t=\cfrac{2}{\sqrt{3}}\arctan\cfrac{t}{\sqrt{3}}+C. \end{aligned}
  其中t=tanx2t=\tan\cfrac{x}{2}。(這道題主要利用了萬能公式求解

(8)dxx+x+2;\displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{x+2}};

  令t=x+2t=\sqrt{x+2},則
dxx+x+2=2tt2+t2dt=23(2t+2dt+1t1dt)=23ln(t+2)2(t1)+C=23ln(x+2+2)2(x+21)+C. \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{x+2}}&=\displaystyle\int\cfrac{2t}{t^2+t-2}\mathrm{d}t=\cfrac{2}{3}\left(\displaystyle\int\cfrac{2}{t+2}\mathrm{d}t+\displaystyle\int\cfrac{1}{t-1}\mathrm{d}t\right)\\ &=\cfrac{2}{3}\ln|(t+2)^2(t-1)|+C\\ &=\cfrac{2}{3}\ln|(\sqrt{x+2}+2)^2(\sqrt{x+2}-1)|+C. \end{aligned}
這道題主要利用了換元積分法求解

(11)02[(x1)3+2x]1cos2nxdx;\displaystyle\int^2_0[(x-1)^3+2x]\sqrt{1-\cos2nx}\mathrm{d}x;


02[(x1)3+2x]1cos2nxdx=x1=t11(t3+2t+2)1cos2πtdt=4011cos2πtdt=4201sinπtdt=82π. \begin{aligned} \displaystyle\int^2_0[(x-1)^3+2x]\sqrt{1-\cos2nx}\mathrm{d}x&\xlongequal{x-1=t}\displaystyle\int^1_{-1}(t^3+2t+2)\sqrt{1-\cos2\pi t}\mathrm{d}t\\ &=4\displaystyle\int^1_0\sqrt{1-\cos2\pi t}\mathrm{d}t=4\sqrt{2}\displaystyle\int^1_0\sin\pi t\mathrm{d}t=\cfrac{8\sqrt{2}}{\pi}. \end{aligned}
這道題主要利用了積分函數的對稱性求解

(12)0+1(x2+1)(1+x5)dx;\displaystyle\int^{+\infty}_0\cfrac{1}{(x^2+1)(1+x^5)}\mathrm{d}x;

  記I=0+1(x2+1)(1+x5)dxI=\displaystyle\int^{+\infty}_0\cfrac{1}{(x^2+1)(1+x^5)}\mathrm{d}x,令x=tantx=\tan t,則I=0π2cos5tcos5t+sin5tdtI=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\cos^5t}{\cos^5t+\sin^5t}\mathrm{d}t,又因I=0π2cos5tcos5t+sin5tdt=t=π2u0π2sin5tcos5t+sin5tdtI=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\cos^5t}{\cos^5t+\sin^5t}\mathrm{d}t\xlongequal{t=\cfrac{\pi}{2}-u}\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\sin^5t}{\cos^5t+\sin^5t}\mathrm{d}t,兩式相加,得I=π4I=\cfrac{\pi}{4}。(這道題主要利用了換元積分法求解

(18)x+sinx1+cosxdx.\displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x.


x+sinx1+cosxdx=x1+cosxdx+sinx1+cosxdx=x1+cosxdx+xsinx1+cosxxd(sinx1+cosx)=x1+cosxdx+xsinx1+cosxx1+cosxdx=xsinx1+cosx+C. \begin{aligned} \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x+\displaystyle\int\cfrac{\sin x}{1+\cos x}\mathrm{d}x\\ &=\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x+\cfrac{x\sin x}{1+\cos x}-\displaystyle\int x\mathrm{d}\left(\cfrac{\sin x}{1+\cos x}\right)\\ &=\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x+\cfrac{x\sin x}{1+\cos x}-\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x\\ &=\cfrac{x\sin x}{1+\cos x}+C. \end{aligned}
(這道題主要利用了分部積分法求解)

22.求I=0ln2xexex+1dx+ln2ln3xexex1dxI=\displaystyle\int^{\ln2}_0\cfrac{xe^x}{e^x+1}\mathrm{d}x+\displaystyle\int^{\ln3}_{\ln2}\cfrac{xe^x}{e^x-1}\mathrm{d}x

  作變量代換:ex=ue^x=u,則I=12lnuu+1du+23lnuu1duI=\displaystyle\int^2_1\cfrac{\ln u}{u+1}\mathrm{d}u+\displaystyle\int^3_2\cfrac{\ln u}{u-1}\mathrm{d}u,對後一積分作代換:u1=tu-1=t,再分部積分,有
I2=23lnuu1du=12ln(t+1)tdt=lntln(t+1)1212lntt+1dt=ln2ln3I1. \begin{aligned} I_2&=\displaystyle\int^3_2\cfrac{\ln u}{u-1}\mathrm{d}u=\displaystyle\int^2_1\cfrac{\ln(t+1)}{t}\mathrm{d}t\\ &=\ln t\ln(t+1)\biggm\vert^2_1-\displaystyle\int^2_1\cfrac{\ln t}{t+1}\mathrm{d}t\\ &=\ln2\ln3-I_1. \end{aligned}
  所以I=I1+I2=ln2ln3I=I_1+I_2=\ln2\ln3。(這道題主要利用了分部積分法求解

CC

1.設an=01xn1x2dx,bn=0π2sinntdta_n=\displaystyle\int^1_0x^n\sqrt{1-x^2}\mathrm{d}x,b_n=\displaystyle\int^{\frac{\pi}{2}}_0\sin^nt\mathrm{d}t,則極限limnnanbn=\lim\limits_{n\to\infty}\cfrac{na_n}{b_n}=(  )
(A)1;(A)1;
(B)0;(B)0;
(C)1;(C)-1;
(D).(D)\infty.


an=01xn1x2dx=x=sint0π2sinntcos2tdt=0π2sinnt(1sin2t)dt=bnbn+2. \begin{aligned} a_n&=\displaystyle\int^1_0x^n\sqrt{1-x^2}\mathrm{d}x\xlongequal{x=\sin t}\displaystyle\int^{\frac{\pi}{2}}_0\sin^nt\cdot\cos^2t\mathrm{d}t\\ &=\displaystyle\int^{\frac{\pi}{2}}_0\sin^nt(1-\sin^2t)\mathrm{d}t=b_n-b_{n+2}. \end{aligned}
  又bn+2=n+1n+2bnb_{n+2}=\cfrac{n+1}{n+2}b_n,則limnnanbn=limnn(1n+1n+2)=limnnn+2=1\lim\limits_{n\to\infty}\cfrac{na_n}{b_n}=\lim\limits_{n\to\infty}n\left(1-\cfrac{n+1}{n+2}\right)=\lim\limits_{n\to\infty}\cfrac{n}{n+2}=1。故選(A)(A)。(這道題主要利用了遞推公式求解

3.設an=320nn+1xn11+xndxa_n=\cfrac{3}{2}\displaystyle\int^{\frac{n}{n+1}}_0x^{n-1}\sqrt{1+x^n}\mathrm{d}x,則limnnan=\lim\limits_{n\to\infty}na_n=______。


an=32n0nn+11+xnd(1+xn)=32n23(1+xn)320nn+1=1n[1+1(1+1n)n]321n. \begin{aligned} a_n&=\cfrac{3}{2n}\displaystyle\int^{\frac{n}{n+1}}_0\sqrt{1+x^n}\mathrm{d}(1+x^n)\\ &=\cfrac{3}{2n}\cdot\cfrac{2}{3}(1+x^n)^{\frac{3}{2}}\biggm\vert^{\frac{n}{n+1}}_0=\cfrac{1}{n}\left[1+\cfrac{1}{\left(1+\cfrac{1}{n}\right)^n}\right]^{\frac{3}{2}}-\cfrac{1}{n}. \end{aligned}
  則limnnan=limn[(1+1(1+1n)n)321]=(1+e1)321\lim\limits_{n\to\infty}na_n=\lim\limits_{n\to\infty}\left[\left(1+\cfrac{1}{\left(1+\cfrac{1}{n}\right)^n}\right)^{\frac{3}{2}}-1\right]=(1+e^{-1})^{\frac{3}{2}}-1。(這道題主要利用了無窮小代換求解

5.設f(x)f(x)x=0x=0處可導,又g(x)={x+12,x<0,sinx2x,x>0,g(x)=\begin{cases}x+\cfrac{1}{2},&x<0,\\\cfrac{\sin\cfrac{x}{2}}{x},&x>0,\end{cases}I=limx0xf(x)(1+x)x+1x+g(x)02xcost2dtxg(x)I=\lim\limits_{x\to0}\cfrac{xf(x)(1+x)^{-\frac{x+1}{x}}+g(x)\displaystyle\int^{2x}_0\cos t^2\mathrm{d}t}{xg(x)}

  I=limx0[f(x)g(x)1(1+x)(1+x)1x+02xcost2dtx]I=\lim\limits_{x\to0}\left[\cfrac{f(x)}{g(x)}\cdot\cfrac{1}{(1+x)(1+x)^{\frac{1}{x}}}+\cfrac{\displaystyle\int^{2x}_0\cos t^2\mathrm{d}t}{x}\right],其中,limx0g(x)=limx0(x+12)=12,limx0+g(x)=limx0+sinx22x2=12\lim\limits_{x\to0^-}g(x)=\lim\limits_{x\to0^-}\left(x+\cfrac{1}{2}\right)=\cfrac{1}{2},\lim\limits_{x\to0^+}g(x)=\lim\limits_{x\to0^+}\cfrac{\sin\cfrac{x}{2}}{2\cfrac{x}{2}}=\cfrac{1}{2},故limx0g(x)=12\lim\limits_{x\to0}g(x)=\cfrac{1}{2},又f(x)f(x)x=0x=0處可導,必連續,即limx0f(x)=f(0)\lim\limits_{x\to0}f(x)=f(0)。故limx0f(x)g(x)=limx0f(x)limx0g(x)=f(0)12=2f(0)\lim\limits_{x\to0}\cfrac{f(x)}{g(x)}=\cfrac{\lim\limits_{x\to0}f(x)}{\lim\limits_{x\to0}g(x)}=\cfrac{f(0)}{\cfrac{1}{2}}=2f(0)
  而limx0(1+x)(1+x)1x=e,limx002xcost2dtx=limx02cos(2x)2=2\lim\limits_{x\to0}(1+x)(1+x)^{\frac{1}{x}}=e,\lim\limits_{x\to0}\cfrac{\displaystyle\int^{2x}_0\cos t^2\mathrm{d}t}{x}=\lim\limits_{x\to0}2\cos(2x)^2=2,於是I=limx0xf(x)(1+x)x+1x+g(x)02xcost2dtxg(x)=2e1f(0)+2I=\lim\limits_{x\to0}\cfrac{xf(x)(1+x)^{-\frac{x+1}{x}}+g(x)\displaystyle\int^{2x}_0\cos t^2\mathrm{d}t}{xg(x)}=2e^{-1}f(0)+2。(這道題主要利用了拆分分式求解

8.求In=11(x21)ndxI_n=\displaystyle\int^1_{-1}(x^2-1)^n\mathrm{d}x

  由分部積分法可得
In=x(x21)n112n11x2(x21)n1dx=2n11(x21)ndx2n11(x21)n1dx=2nIn2nIn1. \begin{aligned} I_n&=x(x^2-1)^n\biggm\vert^1_{-1}-2n\displaystyle\int^1_{-1}x^2(x^2-1)^{n-1}\mathrm{d}x\\ &=-2n\displaystyle\int^1_{-1}(x^2-1)^n\mathrm{d}x-2n\displaystyle\int^1_{-1}(x^2-1)^{n-1}\mathrm{d}x\\ &=-2nI_n-2nI_{n-1}. \end{aligned}
  故In=2n2n+1In1I_n=-\cfrac{2n}{2n+1}I_{n-1}
  遞推得In1=2(n1)2n1In2,In2=2(n2)2n3In3,,I2=45I1I_{n-1}=-\cfrac{2(n-1)}{2n-1}I_{n-2},I_{n-2}=-\cfrac{2(n-2)}{2n-3}I_{n-3},\cdots,I_2=-\cfrac{4}{5}I_1,又I1=11(x21)dx=43I_1=\displaystyle\int^1_{-1}(x^2-1)\mathrm{d}x=-\cfrac{4}{3},所以In=(1)n22n+1(n!)2(2n+1)!I_n=(-1)^n\cfrac{2^{2n+1}(n!)^2}{(2n+1)!}。(這道題主要利用了遞推公式求解

9.求e2nπ1[cos(ln1x)]ln1xdx\displaystyle\int^1_{e^{-2n\pi}}\left|\left[\cos\left(\ln\cfrac{1}{x}\right)\right]'\right|\ln\cfrac{1}{x}\mathrm{d}x

  令ln1x=t\ln\cfrac{1}{x}=t,則x=et,dx=etdtx=e^{-t},\mathrm{d}x=-e^{-t}\mathrm{d}t
e2nπ1[cos(ln1x)]ln1xdx=02nπd(cost)dtdtdxtetdt=02nπetsinttetdt=02nπsinttdt=k=12n(k1)πkπ(1)k1tsintdt=k=12n(1)k1(tcost+sint)(k1)πkπ=k=12n(1)k1[kπ(1)k+(k1)π(1)k1]=k=12n(2k1)π=4n2π. \begin{aligned} \displaystyle\int^1_{e^{-2n\pi}}\left|\left[\cos\left(\ln\cfrac{1}{x}\right)\right]'\right|\ln\cfrac{1}{x}\mathrm{d}x&=\displaystyle\int^{2n\pi}_0\left|\cfrac{\mathrm{d}(\cos t)}{\mathrm{d}t}\cdot\cfrac{\mathrm{d}t}{\mathrm{d}x}\right|te^{-t}\mathrm{d}t=\displaystyle\int^{2n\pi}_0|e^t\cdot\sin t|te^{-t}\mathrm{d}t\\ &=\displaystyle\int^{2n\pi}_0|\sin t|t\mathrm{d}t=\sum\limits_{k=1}^{2n}\displaystyle\int^{k\pi}_{(k-1)\pi}(-1)^{k-1}t\sin t\mathrm{d}t\\ &=\sum\limits_{k=1}^{2n}(-1)^{k-1}(-t\cos t+\sin t)\biggm\vert^{k\pi}_{(k-1)\pi}\\ &=\sum\limits_{k=1}^{2n}(-1)^{k-1}[-k\pi(-1)^k+(k-1)\pi(-1)^{k-1}]\\ &=\sum\limits_{k=1}^{2n}(2k-1)\pi=4n^2\pi. \end{aligned}
這道題主要利用了分段函數求解

13.求反常積分01xbxalnxdx(a,b>0)\displaystyle\int^1_0\cfrac{x^b-x^a}{\ln x}\mathrm{d}x(a,b>0)

  化爲二次積分並交換積分次序,有
01xbxalnxdx=01(abxydy)dx=ba(01xydx)dy=ab1y+1dy=lnb+1a+1. \begin{aligned} \displaystyle\int^1_0\cfrac{x^b-x^a}{\ln x}\mathrm{d}x&=\displaystyle\int^1_0\left(\displaystyle\int^b_ax^y\mathrm{d}y\right)\mathrm{d}x=\displaystyle\int^a_b\left(\displaystyle\int^1_0x^y\mathrm{d}x\right)\mathrm{d}y\\ &=\displaystyle\int^b_a\cfrac{1}{y+1}\mathrm{d}y=\ln\cfrac{b+1}{a+1}. \end{aligned}
這道題主要利用了換序積分求解

14.求反常積分0+1(1+x2)(1+xα)dx(α0)\displaystyle\int^{+\infty}_0\cfrac{1}{(1+x^2)(1+x^\alpha)}\mathrm{d}x(\alpha\ne0)

  令x=1tx=\cfrac{1}{t},則
0+1(1+x2)(1+xα)dx=0+tα(1+t2)(1+tα)dt=0+xα(1+x2)(1+xα)dx=120+1+xα(1+x2)(1+xα)dx=120+11+x2dx=12arctanx0+=π4. \begin{aligned} \displaystyle\int^{+\infty}_0\cfrac{1}{(1+x^2)(1+x^\alpha)}\mathrm{d}x&=\displaystyle\int^{+\infty}_0\cfrac{t^\alpha}{(1+t^2)(1+t^\alpha)}\mathrm{d}t=\displaystyle\int^{+\infty}_0\cfrac{x^\alpha}{(1+x^2)(1+x^\alpha)}\mathrm{d}x\\ &=\cfrac{1}{2}\displaystyle\int^{+\infty}_0\cfrac{1+x^\alpha}{(1+x^2)(1+x^\alpha)}\mathrm{d}x=\cfrac{1}{2}\displaystyle\int^{+\infty}_0\cfrac{1}{1+x^2}\mathrm{d}x\\ &=\cfrac{1}{2}\arctan x\biggm\vert^{+\infty}_0=\cfrac{\pi}{4}. \end{aligned}
這道題主要利用了換元積分法求解

寫在最後

  如果覺得文章不錯就點個贊吧。另外,如果有不同的觀點,歡迎留言或私信。
   歡迎非商業轉載,轉載請註明出處。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章