張宇1000題高等數學 第十六章 無窮級數

目錄

AA

7.設0un1n0\leqslant u_n\leqslant\cfrac{1}{n},則下列級數一定收斂的是(  )。
(A)n=1un;(A)\displaystyle\sum\limits_{n=1}^\infty u_n;
(B)n=1(1)nun;(B)\displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n;
(C)n=1un;(C)\displaystyle\sum\limits_{n=1}^\infty\sqrt{u_n};
(D)n=1(1)nun2.(D)\displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n^2.

  如n=11n\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n}(A),(C)(A),(C)錯誤。
  如n=1(1)n+12n\displaystyle\sum\limits_{n=1}^\infty\cfrac{(-1)^n+1}{2n}(B)(B)錯誤。
  因0un1n0\leqslant u_n\leqslant\cfrac{1}{n},有un21n2u_n^2\leqslant\cfrac{1}{n^2},而n=11n2\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2}收斂,由正項級數的比較判別法知,n=1un2\displaystyle\sum\limits_{n=1}^\infty u_n^2收斂,故n=1(1)nun2\displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n^2絕對收斂,從而收斂,故選(D)(D)。(這道題主要利用了反例求解

20.判別下列正項級數的斂散性。

(3)n=1(n+13n3).\displaystyle\sum\limits_{n=1}^\infty(\sqrt[3]{n+1}-\sqrt[3]{n}).


n+13n3=1(n+1)23+n(n+1)3+n2313(n+1)23 \sqrt[3]{n+1}-\sqrt[3]{n}=\cfrac{1}{\sqrt[3]{(n+1)^2}+\sqrt[3]{n(n+1)}+\sqrt[3]{n^2}}\geqslant\cfrac{1}{3\sqrt[3]{(n+1)^2}}
  又n=11(n+1)23=n=21n23\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{(n+1)^{\frac{2}{3}}}=\displaystyle\sum\limits_{n=2}^\infty\cfrac{1}{n^{\frac{2}{3}}}發散,由比較判別法知,n=1(n+13n3)\displaystyle\sum\limits_{n=1}^\infty(\sqrt[3]{n+1}-\sqrt[3]{n})發散。(這道題主要利用了分子有理化求解

21.設級數n=1an\displaystyle\sum\limits_{n=1}^\infty a_n條件收斂,判別級數n=1nan(x1)n\displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n在點x1=3,x2=3x_1=\sqrt{3},x_2=3處的收斂性。

  由題設條件n=1an\displaystyle\sum\limits_{n=1}^\infty a_n收斂,可知n=1anxn\displaystyle\sum\limits_{n=1}^\infty a_nx^n的收斂半徑R=1R=1。若R<1R<1,則n=1anxnx=1=n=1an\displaystyle\sum\limits_{n=1}^\infty a_nx^n\biggm\vert_{x=1}=\displaystyle\sum\limits_{n=1}^\infty a_n發散,與已知矛盾;若R>1R>1,則n=1anxnx=1=n=1an\displaystyle\sum\limits_{n=1}^\infty a_nx^n\biggm\vert_{x=1}=\displaystyle\sum\limits_{n=1}^\infty a_n絕對收斂,與已知矛盾。
  由於n=1nanxn=xn=1nanxx1=xn=1(anxn)\displaystyle\sum\limits_{n=1}^\infty na_nx^n=x\displaystyle\sum\limits_{n=1}^\infty na_nx^{x-1}=x\displaystyle\sum\limits_{n=1}^\infty(a_nx^n)'的收斂半徑與n=1anxn\displaystyle\sum\limits_{n=1}^\infty a_nx^n收斂半徑相同,即R=1R=1,收斂區間爲(1,1)(-1,1)
  當x1=3x_1=\sqrt{3}時,考察n=1nan(x1)n\displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n,由於31<1|\sqrt3-1|<1,因此n=1nan(x1)n\displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^nx1=3x_1=\sqrt{3}處絕對收斂;
  當x2=3x_2=3時,考察n=1nan(x1)n\displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n,由於31>1|3-1|>1,因此n=1nan(x1)n\displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^nx2=3x_2=3處發散。(這道題主要利用了分類討論求解

BB

2.下列命題正確的是(  )。
(A)(A)un<vn(n=1,2,3,)u_n<v_n(n=1,2,3,\cdots),則n=1unn=1vn\displaystyle\sum\limits_{n=1}^\infty u_n\leqslant\displaystyle\sum\limits_{n=1}^\infty v_n
(B)(B)un<vn(n=1,2,3,)u_n<v_n(n=1,2,3,\cdots)n=1vn\displaystyle\sum\limits_{n=1}^\infty v_n收斂,則n=1un\displaystyle\sum\limits_{n=1}^\infty u_n收斂;
(C)(C)limnunvn=1\lim\limits_{n\to\infty}\cfrac{u_n}{v_n}=1n=1vn\displaystyle\sum\limits_{n=1}^\infty v_n收斂,則n=1un\displaystyle\sum\limits_{n=1}^\infty u_n收斂;
(D)(D)wn<un<vn(n=1,2,3,)w_n<u_n<v_n(n=1,2,3,\cdots)n=1wn\displaystyle\sum\limits_{n=1}^\infty w_nn=1vn\displaystyle\sum\limits_{n=1}^\infty v_n收斂,則n=1un\displaystyle\sum\limits_{n=1}^\infty u_n收斂。

  因爲只有當級數收斂時,才能比較其和的大小,故(A)(A)錯誤。
  若取級數n=1(1n)\displaystyle\sum\limits_{n=1}^\infty\left(-\cfrac{1}{n}\right)n=11n2\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2},可見(B)(B)錯誤。
  若取級數n=1(1)nn\displaystyle\sum\limits_{n=1}^\infty\cfrac{(-1)^n}{\sqrt{n}}n=1[(1)nn+1n]\displaystyle\sum\limits_{n=1}^\infty\left[\cfrac{(-1)^n}{\sqrt{n}}+\cfrac{1}{n}\right],可見(C)(C)錯誤。
  故選(D)(D)。(這道題主要利用了反例求解

CC

6.設函數fn(x)=0xt(1t)sin2ntdt(x>0)f_n(x)=\displaystyle\int^x_0t(1-t)\sin^{2n}t\mathrm{d}t(x>0),其中nn爲正整數。

(1)證明fn(x)f_n(x)在區間(0,+)(0,+\infty)上存在最大值;

  由fn(x)=x(1x)sin2nx=0f'_n(x)=x(1-x)\sin^{2n}x=0,解得函數fn(x)f_n(x)(0,+)(0,+\infty)內的所有駐點爲x0=1x_0=1xk=kπ,k=1,2,x_k=k\pi,k=1,2,\cdots。易知,x0=1x_0=1fn(x)f_n(x)(0,+)(0,+\infty)上的唯一極值點且爲極大值點,所以fn(1)f_n(1)fn(x)f_n(x)(0,+)(0,+\infty)上的最大值。

(2)記ana_n爲函數fn(x)f_n(x)(0,+)(0,+\infty)上的最大值(n1)(n\geqslant1),證明級數n=1an\displaystyle\sum\limits_{n=1}^\infty a_n收斂。

  因爲an=fn(1)=01t(1t)sin2ntdt(n1)a_n=f_n(1)=\displaystyle\int^1_0t(1-t)\sin^{2n}t\mathrm{d}t(n\geqslant1),且當0tπ20\leqslant t\leqslant\cfrac{\pi}{2}時有sintt\sin t\leqslant t,所以0an01t(1t)t2ndt=01t2n+1dt01t2n+2dt=12n+212n+31n20\leqslant a_n\leqslant\displaystyle\int^1_0t(1-t)t^{2n}\mathrm{d}t=\displaystyle\int^1_0t^{2n+1}\mathrm{d}t-\displaystyle\int^1_0t^{2n+2}\mathrm{d}t=\cfrac{1}{2n+2}-\cfrac{1}{2n+3}\leqslant\cfrac{1}{n^2}。利用比較判別法,由n=11n2\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2}收斂可知,級數n=1an\displaystyle\sum\limits_{n=1}^\infty a_n收斂。(這道題主要利用了放縮法求解

7.

(1)設f(x)f(x)爲任意階可導函數,且f(x)=n=1anxnf(x)=\displaystyle\sum\limits_{n=1}^\infty a_nx^n,若f(x)f(x)爲奇函數,證明f(x)=n=1a2n1x2n1f(x)=\displaystyle\sum\limits_{n=1}^\infty a_{2n-1}x^{2n-1}

  由f(x)f(x)爲奇函數,即f(x)=f(x)f(x)=-f(-x),於是有n=1anxn=n=1an(x)n=n=1(1)n+1anxn\displaystyle\sum\limits_{n=1}^\infty a_nx^n=-\displaystyle\sum\limits_{n=1}^\infty a_n(-x)^n=\displaystyle\sum\limits_{n=1}^\infty(-1)^{n+1}a_nx^n,比較兩端xx同次項係數,得an=(1)n+1ana_n=(-1)^{n+1}a_n
  當n=2kn=2k爲偶數時,a2k=a2ka_{2k}=-a_{2k},則a2k=0,k=0,1,2,a_{2k}=0,k=0,1,2,\cdots
  當n=2k1n=2k-1爲奇數時,a2k1=a2k1,k=1,2,a_{2k-1}=a_{2k-1},k=1,2,\cdots
  綜上可知,f(x)=k=1a2k1x2k1f(x)=\displaystyle\sum\limits_{k=1}^\infty a_{2k-1}x^{2k-1},亦可寫成f(x)=n=1a2n1x2n1f(x)=\displaystyle\sum\limits_{n=1}^\infty a_{2n-1}x^{2n-1}

(2)將函數f(x)=0xex2t2dtf(x)=\displaystyle\int^x_0e^{x^2-t^2}\mathrm{d}t展開爲xx的冪級數。

  f(x)=ex20xet2dtf(x)=e^{x^2}\cdot\displaystyle\int^x_0e^{-t^2}\mathrm{d}t爲奇函數,由(1)(1),設f(x)=n=1a2n1x2n1f(x)=\displaystyle\sum\limits_{n=1}^\infty a_{2n-1}x^{2n-1}
  對求導f(x)=0xex2t2dtf(x)=\displaystyle\int^x_0e^{x^2-t^2}\mathrm{d}t,得f(x)=2xf(x)+1f'(x)=2xf(x)+1,即n=1(2n1)a2n1x2n2=n=12a2n1x2n+1\displaystyle\sum\limits_{n=1}^\infty(2n-1)a_{2n-1}x^{2n-2}=\displaystyle\sum\limits_{n=1}^\infty2a_{2n-1}x^{2n}+1,也即n=1(2n+1)a2n+1x2n+a1=n=12a2n1x2n+1\displaystyle\sum\limits_{n=1}^\infty(2n+1)a_{2n+1}x^{2n}+a_1=\displaystyle\sum\limits_{n=1}^\infty2a_{2n-1}x^{2n}+1
  比較兩端同次項係數,得a1=1a_1=1,於是
a2n+1=22n+1a2n1=22n+122n1a2n3==22n+122n123a1=2n(2n+1)!!. \begin{aligned} a_{2n+1}&=\cfrac{2}{2n+1}a_{2n-1}=\cfrac{2}{2n+1}\cdot\cfrac{2}{2n-1}a_{2n-3}=\cdots\\ &=\cfrac{2}{2n+1}\cdot\cfrac{2}{2n-1}\cdot\cdots\cdot\cfrac{2}{3}\cdot a_1=\cfrac{2^n}{(2n+1)!!}. \end{aligned}
  故f(x)=x+n=12n(2n+1)!!x2n+1,x(,+)f(x)=x+\displaystyle\sum\limits_{n=1}^\infty\cfrac{2^n}{(2n+1)!!}x^{2n+1},x\in(-\infty,+\infty)。(這道題主要利用了微分方程求解

9.設x>2x>2,證明lnx+2x2=ln(x+1x1)2+2n=112n1(2x33x)2n1\ln\cfrac{x+2}{x-2}=\ln\left(\cfrac{x+1}{x-1}\right)^2+2\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}\left(\cfrac{2}{x^3-3x}\right)^{2n-1}

  令S(u)=n=112n1u2n1S(u)=\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}u^{2n-1},於是當u<1|u|<1時,有S(u)=S(0)+0uS(t)dt=0u(n=112n1t2n1)dt=0un=1t2n2dt=0u11t2dt=12ln1+u1uS(u)=S(0)+\displaystyle\int^u_0S'(t)\mathrm{d}t=\displaystyle\int^u_0\left(\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}t^{2n-1}\right)\mathrm{d}t=\displaystyle\int^u_0\displaystyle\sum\limits_{n=1}^\infty t^{2n-2}\mathrm{d}t=\displaystyle\int^u_0\cfrac{1}{1-t^2}\mathrm{d}t=\cfrac{1}{2}\ln\cfrac{1+u}{1-u}。代入u=2x33xu=\cfrac{2}{x^3-3x},故n=112n1(2x33x)2n1=12ln(x+2)(x1)2(x+1)2(x2)(x>2)\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}\left(\cfrac{2}{x^3-3x}\right)^{2n-1}=\cfrac{1}{2}\ln\cfrac{(x+2)(x-1)^2}{(x+1)^2(x-2)}(x>2)。(這道題主要利用了冪級數展開求解

10.設bn>0b_n>0,當n2n\geqslant2時,bn=bn1+(n1)bn2,b0=b1=1b_n=b_{n-1}+(n-1)b_{n-2},b_0=b_1=1bnbn1\cfrac{b_n}{b_{n-1}}有界,求n=1bnxnn!\displaystyle\sum\limits_{n=1}^\infty b_n\cfrac{x^n}{n!}的和函數。

  記an=bnn!a_n=\cfrac{b_n}{n!},則limnan+1an=limnbn+1(n+1)!n!bn=limn1n+1bn+1bn=0\lim\limits_{n\to\infty}\left|\cfrac{a_{n+1}}{a_n}\right|=\lim\limits_{n\to\infty}\left|\cfrac{b_{n+1}}{(n+1)!}\cdot\cfrac{n!}{b_n}\right|=\lim\limits_{n\to\infty}\left|\cfrac{1}{n+1}\cdot\cfrac{b_{n+1}}{b_n}\right|=0,故收斂區間爲(,+)(-\infty,+\infty)。又記S(x)=n=1bnxnn!S(x)=\displaystyle\sum\limits_{n=1}^\infty b_n\cfrac{x^n}{n!},則
S(x)=n=1bnxn1(n1)!=b1+n=2[bn1+(n1)bn2]xn1(n1)!=n=1bn1xn1(n1)!+n=2bn2xn2(n2)!x=n=0bnxnn!+xn=0bnxnn! \begin{aligned} S'(x)&=\displaystyle\sum\limits_{n=1}^\infty b_n\cfrac{x^{n-1}}{(n-1)!}=b_1+\displaystyle\sum\limits_{n=2}^\infty[b_{n-1}+(n-1)b_{n-2}]\cfrac{x^{n-1}}{(n-1)!}\\ &=\displaystyle\sum\limits_{n=1}^\infty b_{n-1}\cfrac{x^{n-1}}{(n-1)!}+\displaystyle\sum\limits_{n=2}^\infty b_{n-2}\cfrac{x^{n-2}}{(n-2)!}\cdot x=\displaystyle\sum\limits_{n=0}^\infty b_n\cfrac{x^n}{n!}+x\cdot\displaystyle\sum\limits_{n=0}^\infty b_n\cfrac{x^n}{n!} \end{aligned}
  於是S(x)S(x)=1+x\cfrac{S'(x)}{S(x)}=1+x,即1S(x)d[S(x)]=(1+x)dx\displaystyle\int\cfrac{1}{S(x)}\mathrm{d}[S(x)]=\displaystyle\int(1+x)\mathrm{d}x,得lnS(x)=x+x22+lnC1\ln|S(x)|=x+\cfrac{x^2}{2}+\ln C_1,也即得S(x)=±C1ex+x22=Cex+x22S(x)=\pm C_1e^{x+\frac{x^2}{2}}=Ce^{x+\frac{x^2}{2}},又S(0)=1S(0)=1,故C=1C=1,於是S(x)=ex+x22,x(,+)S(x)=e^{x+\frac{x^2}{2}},x\in(-\infty,+\infty)。(這道題主要利用了微分方程求解

寫在最後

  如果覺得文章不錯就點個贊吧。另外,如果有不同的觀點,歡迎留言或私信。
   歡迎非商業轉載,轉載請註明出處。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章