数据链路层(以太网、MTU、ARP协议)

数据链路层

认识以太网

"以太网" 不是一种具体的网络, 而是一种技术标准; 既包含了数据链路层的内容, 也包含了一些物理层的内容. 例如: 规定了网络拓扑结构, 访问控制方式, 传输速率等;
例如以太网中的网线必须使用双绞线; 传输速率有10M, 100M, 1000M等;以太网是当前应用最广泛的局域网技术; 和以太网并列的还有令牌环网, 无线LAN等;

以太网帧格式

在这里插入图片描述
源地址和目的地址是指网卡的硬件地址(也叫MAC地址), 长度是48位,是在网卡出厂时固化的;
帧协议类型字段有三种值,分别对应IP、ARP、RARP;
帧末尾是CRC校验码

认识MAC地址

MAC地址用来识别数据链路层中相连的节点;
长度为48位, 及6个字节. 一般用16进制数字加上冒号的形式来表示(如08:00:27:03:fb:19)
在网卡出厂时就确定了, 不能修改. mac地址通常是唯一的(虚拟机中的mac地址不是真实的mac地址, 可能会冲突; 也有些网卡支持用户配置mac地址).

对比理解MAC地址和IP地址

IP地址描述的是路途总体的 起点 和 终点;
MAC地址描述的是路途上的每一个区间的起点和终点;

MTU

MTU相当于发快递时对包裹尺寸的限制. 这个限制是不同的数据链路对应的物理层, 产生的限制.

以太网帧中的数据长度规定最小46字节,最大1500字节,ARP数据包的长度不够46字节,要在后面补填充位;最大值1500称为以太网的最大传输单元(MTU),不同的网络类型有不同的MTU;如果一个数据包从以太网路由到拨号链路上,数据包长度大于拨号链路的MTU了,则需要对数据包进行分片(fragmentation);不同的数据链路层标准的MTU是不同的;

MTU对IP协议的影响

由于数据链路层MTU的限制, 对于较大的IP数据包要进行分包.
将较大的IP包分成多个小包, 并给每个小包打上标签;
每个小包IP协议头的 16位标识(id) 都是相同的;
每个小包的IP协议头的3位标志字段中, 第2位置为0, 表示允许分片, 第3位来表示结束标记(当前是否是最后一个小包, 是的话置为1, 否则置为0);
到达对端时再将这些小包, 会按顺序重组, 拼装到一起返回给传输层;
一旦这些小包中任意一个小包丢失, 接收端的重组就会失败. 但是IP层不会负责重新传输数据;

MTU对UDP协议的影响

一旦UDP携带的数据超过1472(1500 - 20(IP首部) - 8(UDP首部)), 那么就会在网络层分成多个IP数据报.
这多个IP数据报有任意一个丢失, 都会引起接收端网络层重组失败. 那么这就意味着, 如果UDP数据报在网络层被分片, 整个数据被丢失的概率就大大增加了.

MTU对于TCP协议的影响

TCP的一个数据报也不能无限大, 还是受制于MTU. TCP的单个数据报的最大消息长度, 称为MSS(MaxSegment Size);
TCP在建立连接的过程中, 通信双方会进行MSS协商.
最理想的情况下, MSS的值正好是在IP不会被分片处理的最大长度(这个长度仍然是受制于数据链路层的MTU).
双方在发送SYN的时候会在TCP头部写入自己能支持的MSS值.
然后双方得知对方的MSS值之后, 选择较小的作为最终MSS.
MSS的值就是在TCP首部的40字节变长选项中(kind=2);

ARP协议

ARP不是一个单纯的数据链路层的协议, 而是一个介于数据链路层和网络层之间的协议;

ARP协议的作用

ARP协议建立了主机 IP地址 和 MAC地址 的映射关系.
在网络通讯时,源主机的应用程序知道目的主机的IP地址和端口号,却不知道目的主机的硬件地址;
数据包首先是被网卡接收到再去处理上层协议的,如果接收到的数据包的硬件地址与本机不符,则直接丢弃;因此在通讯前必须获得目的主机的硬件地址;

ARP协议的工作流程

在这里插入图片描述
源主机发出ARP请求,询问“IP地址是192.168.0.1的主机的硬件地址是多少”, 并将这个请求广播到本地网段(以太网帧首部的硬件地址填FF:FF:FF:FF:FF:FF表示广播);
目的主机接收到广播的ARP请求**,发现其中的IP地址与本机相符,则发送一个ARP应答数据包给源主机,将自己的硬件地址填写在应答包中;**每台主机都维护一个ARP缓存表,可以用arp -a命令查看。缓存表中的表项有过期时间(一般为20分钟),如果20分钟内没有再次使用某个表项,则该表项失效,下次还要发ARP请求来获得目的主机的硬件地

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章