李永樂數學基礎過關660題2階高等數學填空題

577.若級數n=2n(lnn+1n1)p\sum^{\infty}\limits_{n=2}\sqrt{n}\left(\ln\cfrac{n+1}{n-1}\right)^p收斂,則其中常數pp的取值範圍是______.

  當n=2,3,4,n=2,3,4,\cdots時,n+1n1>1\cfrac{n+1}{n-1}>1,從而(lnn+1n1)p>0\left(\ln\cfrac{n+1}{n-1}\right)^p>0對任何常數pp成立,該級數是正項級數。
  因當nn\to\infty時,lnn+1n1=ln(1+2n1)2n12\ln\cfrac{n+1}{n-1}=\ln\left(1+\cfrac{2}{n-1}\right)\sim\cfrac{2}{n-1}\sim2,於是,n(lnn+1n1)pn(2n)p=2pnp12,(n)\sqrt{n}\left(\ln\cfrac{n+1}{n-1}\right)^p\sim\sqrt{n}\left(\cfrac{2}{n}\right)^p=\cfrac{2^p}{n^{p-\frac{1}{2}}},(n\to\infty)limnn(lnn+1n1)p2pnp12=1\lim\limits_{n\to\infty}\cfrac{\sqrt{n}\left(\ln\cfrac{n+1}{n-1}\right)^p}{\cfrac{2^p}{n^{p-\frac{1}{2}}}}=1n=2n(lnn+1n1)p\sum^{\infty}\limits_{n=2}\sqrt{n}\left(\ln\cfrac{n+1}{n-1}\right)^pn=22pnp12\sum^{\infty}\limits_{n=2}\cfrac{2^p}{n^{p-\frac{1}{2}}}有同樣的斂散性,後者僅當p>32p>\cfrac{3}{2}時收斂。
  因此級數n=2n(lnn+1n1)p\sum^{\infty}\limits_{n=2}\sqrt{n}\left(\ln\cfrac{n+1}{n-1}\right)^p收斂的常數pp的取值範圍是(32,+)\left(\cfrac{3}{2},+\infty\right)。(這道題主要利用了等價無窮小代換求解

584.冪級數n=1(1)n2n+1(2n)!\sum^\infty\limits_{n=1}(-1)^n\cfrac{2n+1}{(2n)!}的和函數S(x)=S(x)=______.


sinx=n=0(1)n(2n+1)!x2n+1=n=1(1)n1(2n1)!x2n1,cosx=n=0(1)n(2n)!x2n,S(x)=n=0(1)n(2n)!(2n+1)x2n=n=1(1)n(2n)!(2n)x2n+n=0(1)n(2n)!x2n=n=1(1)n(2n1)!x2n+n=0(1)n(2n)!x2n1=xsinx+cosx1 \begin{aligned} \sin x&=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^n}{(2n+1)!}x^{2n+1}=\sum^{\infty}\limits_{n=1}\cfrac{(-1)^{n-1}}{(2n-1)!}x^{2n-1},\\ \cos x&=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^n}{(2n)!}x^{2n},\\ S(x)&=\sum^{\infty}\limits_{n=0}\cfrac{(-1)^n}{(2n)!}(2n+1)x^{2n}=\sum^{\infty}\limits_{n=1}\cfrac{(-1)^n}{(2n)!}(2n)x^{2n}+\sum^{\infty}\limits_{n=0}\cfrac{(-1)^n}{(2n)!}x^{2n}\\ &=\sum^{\infty}\limits_{n=1}\cfrac{(-1)^n}{(2n-1)!}x^{2n}+\sum^{\infty}\limits_{n=0}\cfrac{(-1)^n}{(2n)!}x^{2n}-1\\ &=-x\sin x+\cos x-1 \end{aligned}
這道題主要利用了泰勒展開式求解

600.設Σ\Sigma爲球面x2+y2+z2=2ax(a>0)x^2+y^2+z^2=2ax(a>0),則面積分Σ(x2+y2+z2)dS=\displaystyle\iint\limits_{\Sigma}(x^2+y^2+z^2)\mathrm{d}S=______.


Σ(x2+y2+z2)dS=Σ2axdS=2axS. \displaystyle\iint\limits_{\Sigma}(x^2+y^2+z^2)\mathrm{d}S=\displaystyle\iint\limits_{\Sigma}2ax\mathrm{d}S=2a\overline{x}S.
  其中x\overline{x}爲球面x2+y2+z2=2axx^2+y^2+z^2=2ax的形心的xx座標,則x=a\overline{x}=a
  SS爲該球面的面積,則S=4πa2S=4\pi a^2,故Σ(x2+y2+z2)dS=8πa4\displaystyle\iint\limits_{\Sigma}(x^2+y^2+z^2)\mathrm{d}S=8\pi a^4。(這道題主要利用了形心的定義求解)

603.設LL爲球面x2+y2+z2=1x^2+y^2+z^2=1與平面x+y+z=0x+y+z=0的交線,則L(x+2y)2ds=\displaystyle\oint\limits_{L}(x+2y)^2\mathrm{d}s=______.


L(x+2y)2ds=L(x2+4xy+4y2)ds=L(x2+4y2)ds+4Lxyds. \begin{aligned} \displaystyle\oint_L(x+2y)^2\mathrm{d}s&=\displaystyle\oint_L(x^2+4xy+4y^2)\mathrm{d}s\\ &=\displaystyle\oint_L(x^2+4y^2)\mathrm{d}s+4\displaystyle\oint_Lxy\mathrm{d}s. \end{aligned}
  由變量對稱性知Lx2ds=Ly2ds=Lz2ds\displaystyle\oint_Lx^2\mathrm{d}s=\displaystyle\oint_Ly^2\mathrm{d}s=\displaystyle\oint_Lz^2\mathrm{d}sLxyds=Lyzds=Lxzds\displaystyle\oint_Lxy\mathrm{d}s=\displaystyle\oint_Lyz\mathrm{d}s=\displaystyle\oint_Lxz\mathrm{d}s,則
L(x2+4y2)ds=L(x2+4x2)ds=5Lx2ds=53L(x2+y2+z2)ds=53Lds=53×2π=10π3,Lxyds=13L(xy+yz+xz)ds=16L(2xy+2yz+2xz)ds=16L[(x+y+z)2(x2+y2+z2)]ds=16L[01]ds=16×2π=π3. \begin{aligned} \displaystyle\oint_L(x^2+4y^2)\mathrm{d}s&=\displaystyle\oint_L(x^2+4x^2)\mathrm{d}s=5\displaystyle\oint_Lx^2\mathrm{d}s\\ &=\cfrac{5}{3}\displaystyle\oint_L(x^2+y^2+z^2)\mathrm{d}s\\ &=\cfrac{5}{3}\displaystyle\oint_L\mathrm{d}s=\cfrac{5}{3}\times2\pi=\cfrac{10\pi}{3}, \end{aligned}\\ \begin{aligned} \displaystyle\oint_Lxy\mathrm{d}s&=\cfrac{1}{3}\displaystyle\oint_L(xy+yz+xz)\mathrm{d}s\\ &=\cfrac{1}{6}\displaystyle\oint_L(2xy+2yz+2xz)\mathrm{d}s\\ &=\cfrac{1}{6}\displaystyle\oint_L[(x+y+z)^2-(x^2+y^2+z^2)]\mathrm{d}s\\ &=\cfrac{1}{6}\displaystyle\oint_L[0-1]\mathrm{d}s=-\cfrac{1}{6}\times2\pi=-\cfrac{\pi}{3}. \end{aligned}
  故原式=10π3+4(π3)=2π\text{原式}=\cfrac{10\pi}{3}+4\left(-\cfrac{\pi}{3}\right)=2\pi。(這道題主要利用了被積曲線的對稱性求解

614.設f(x,y,z)=x2+y2+z2f(x,y,z)=\sqrt{x^2+y^2+z^2},則div(gradf)(1,2,2)=\mathrm{div}(\bold{grad}f)\biggm\vert_{(1,-2,2)}=______.

  令r=x2+y2+z2r=\sqrt{x^2+y^2+z^2},則gradf=(xr,yr,zr)\bold{grad}f=\left(\cfrac{x}{r},\cfrac{y}{r},\cfrac{z}{r}\right)
div(gradf)=x(xr)+y(yr)+z(zr)=(1rx2r3)+(1ry2r3)+(1rz2r3)=3r1r=2r,div(gradf)(1,2,2)=23. \begin{aligned} \mathrm{div}(\bold{grad}f)&=\cfrac{\partial}{\partial x}\left(\cfrac{x}{r}\right)+\cfrac{\partial}{\partial y}\left(\cfrac{y}{r}\right)+\cfrac{\partial}{\partial z}\left(\cfrac{z}{r}\right)\\ &=\left(\cfrac{1}{r}-\cfrac{x^2}{r^3}\right)+\left(\cfrac{1}{r}-\cfrac{y^2}{r^3}\right)+\left(\cfrac{1}{r}-\cfrac{z^2}{r^3}\right)\\ &=\cfrac{3}{r}-\cfrac{1}{r}=\cfrac{2}{r}, \end{aligned}\\ \mathrm{div}(\bold{grad}f)\biggm\vert_{(1,-2,2)}=\cfrac{2}{3}.
這道題主要利用了梯度的定義求解

615.向量場A(x,y,z)=(x+y+z)i+xyj+zk\bm{A}(x,y,z)=(x+y+z)\bm{i}+xy\bm{j}+z\bm{k}的旋度rotA=\bold{rot}\bm{A}=______.


rotA=ijkxyzx+y+zxyz=j+(y1)k. \bold{rot}\bm{A}=\begin{vmatrix}\bm{i}&\bm{j}&\bm{k}\\\cfrac{\partial}{\partial x}&\cfrac{\partial}{\partial y}&\cfrac{\partial}{\partial z}\\x+y+z&xy&z\end{vmatrix}=\bm{j}+(y-1)\bm{k}.
這道題主要利用了旋度的定義求解

寫在最後

  如果覺得文章不錯就點個贊吧。另外,如果有不同的觀點,歡迎留言或私信。
   歡迎非商業轉載,轉載請註明出處。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章