Coursera NG 機器學習 第七週 KMeans PCA 圖像壓縮 Python實現

KMeans

ex7.py 

import numpy as np
import matplotlib.pyplot as plt
import time
from scipy.io import loadmat
from sklearn.cluster import KMeans
from ex7modules import *

#Part 1:Check MyKMeans
X=loadmat('ex7data2.mat')['X']
K=3
max_iters=10
init_centroids=np.array([[3,3],[6,2],[8,5]])
centroids,idx=MyKMeans(X,init_centroids,max_iters,True)

#Part 2:Image Compression
fig=loadmat('bird_small')['A']/255   #Normalize
fig_size=fig.shape[0]
plt.imshow(fig)
plt.show()

fig=fig.reshape(3,-1).T  #convert(128,128,3) to (3,128*128) ,to fit the KMeans function

K=16  #reduce nmuber of colors to 16
max_iters=10

time_start=time.time()
init_centroids=InitCentroids(fig,K)

fig_centroids,_=MyKMeans(fig,init_centroids,max_iters,False) # find the most used K colors

fig_idx=findClosestCentroids(fig,fig_centroids)  # find every pixel's closest color
time_end=time.time()

print("Using my Kmeans costs time: ",time_end-time_start)

fig_recovered=np.zeros((fig_size*fig_size,3))  #assign every pixel to the closest color
for i in range(fig_size*fig_size):
    fig_recovered[i,:]=fig_centroids[fig_idx[i]-1,:]

fig_recovered=fig_recovered.T.reshape((fig_size,fig_size,3))  #need to Transpose first,otherwise
                                                              #there is a mistake in image show
plt.imshow(fig_recovered)
plt.show()

#Part 3:Using SKlearn
time_start=time.time()
clf=KMeans(n_clusters=16,init='random',max_iter=50)
clf.fit(fig)
time_end=time.time()

print("Using SKlearn Kmeans costs time: ",time_end-time_start)

cluster_centers=clf.cluster_centers_
labels=clf.labels_

fig_recovered=np.zeros((fig_size*fig_size,3))
for i in range(fig_size*fig_size):
    fig_recovered[i,:]=cluster_centers[labels[i],:]

fig_recovered=fig_recovered.T.reshape((fig_size,fig_size,3))

plt.imshow(fig_recovered)
plt.show()

 

從左至右,依次是原圖,自己的KMeans和SKlearn的KMeans。速度上,還是差很多滴~~~

怎麼感覺圖被壓胡了。。w(゜Д゜)w。。。沒有課件裏的效果好。。

                                                                                        課件效果

                                                                             


PCA

ex7pca.py

from scipy.io import loadmat
from ex7modules import *
#part 1
X=loadmat('ex7data1.mat')['X']

X_norm,mu,sigma=featureNormalize(X)
U,S=PCA(X_norm)
visualizeEigVector(mu,U,S,X)

print('Top eigenvector: ')
print(U[0,0],U[0,1])
print()

K=1
Z=projectData(X_norm,U,K)
X_rec=recoverData(Z,U,K)
visualizePCA(X_norm,X_rec)

#Part 2
X=loadmat('ex7faces.mat')['X']
displayData(X,10)

X_norm,_,_=featureNormalize(X)
U,S=PCA(X_norm)
displayData(U.T,6)

K=100
Z=projectData(X_norm,U,K)
print('The projected data Z has a size of: ',Z.shape)
X_rec=recoverData(Z,U,K)
displayData(X_rec,10)

Cpcompare(X,X_rec,10)

                                           

前100個圖像

                                   

提取的前36個特徵(鬼出沒w(゜Д゜)w)

                                  

壓縮後還原的圖像

                                 

壓縮前跟壓縮後的對比

                             

 


ex7modules.py 

import numpy as np
import matplotlib.pyplot as plt

def findClosestCentroids(X,centroids):
    K=centroids.shape[0]
    dist=np.zeros((X.shape[0],K))
    for i in range(X.shape[0]):
        for j in range(K):
            dist[i, j]=np.linalg.norm(X[i,:]-centroids[j,:])
    idx=np.argmin(dist,axis=1)
    return idx+1

def computeCentroids(X,idx,K):
    centroids=np.zeros((K,X.shape[1]))
    for i in range(1,K+1):
        X_idx = np.where(idx == i)
        X_re = X[X_idx, :].reshape(X[X_idx, :].shape[1], X[X_idx, :].shape[2])
        centroids[i - 1, :] = np.sum(X_re, axis=0, keepdims=True) / len(X_idx[0])
    return centroids

def MyKMeans(X,initial_centroids,max_iters,plot):
    K=initial_centroids.shape[0]
    for i in range(max_iters):
        idx=findClosestCentroids(X,initial_centroids)
        initial_centroids=computeCentroids(X,idx,K)
        if plot==True:
            idx1 = np.where(idx == 1)[0]
            idx2 = np.where(idx == 2)[0]
            idx3 = np.where(idx == 3)[0]
            plt.scatter(X[idx1, 0], X[idx1, 1], c='w',edgecolors='r',s=10)
            plt.scatter(X[idx2, 0], X[idx2, 1], c='w',edgecolors='b',s=10)
            plt.scatter(X[idx3, 0], X[idx3, 1], c='w',edgecolors='k',s=10)
            plt.scatter(initial_centroids[0, 0], initial_centroids[0, 1], marker='x', c='r')
            plt.scatter(initial_centroids[1, 0], initial_centroids[1, 1], marker='x', c='b')
            plt.scatter(initial_centroids[2, 0], initial_centroids[2, 1], marker='x', c='k')
            plt.show()
    return initial_centroids,idx

def InitCentroids(X,K):
    randidx=np.random.permutation(X.shape[0])
    centroids=X[randidx[0:K],:]
    return centroids

def featureNormalize(X):
    mu=np.mean(X,axis=0)
    sigma=np.std(X,axis=0,ddof=1)
    X=(X-mu)/sigma
    return X,mu,sigma

def PCA(X):
    U,S,_=np.linalg.svd(X.T.dot(X)/X.shape[0])
    return U,S

def projectData(X,U,K):
    return X.dot(U[:,:K])

def recoverData(Z,U,K):
    return Z.dot(U[:,:K].T)

def displayData(X,num):
    fig, ax = plt.subplots(num, num)
    for i in range(num):
        for j in range(num):
            ax[i, j].imshow(X[i * num + j, :].reshape((32, 32)).T, cmap='gray')
            ax[i, j].set_xticks([])
            ax[i, j].set_yticks([])
    fig.tight_layout()
    plt.subplots_adjust(wspace=0, hspace=0)
    plt.show()

def Cpcompare(X,X_rec,num):
    fig, ax = plt.subplots(num, num*2)
    for i in range(num):
        for j in range(0,num*2,2):
            ax[i, j].imshow(X[i * num + j, :].reshape((32, 32)).T, cmap='gray')
            ax[i, j].set_xticks([])
            ax[i, j].set_yticks([])
            ax[i, j+1].imshow(X_rec[i * num + j, :].reshape((32, 32)).T, cmap='gray')
            ax[i, j+1].set_xticks([])
            ax[i, j+1].set_yticks([])
    fig.tight_layout()
    plt.subplots_adjust(wspace=0, hspace=0)
    plt.show()


def visualizeEigVector(mu,U,S,X):
    mu = mu.reshape((1, 2))
    point1 = mu + 1.5 * S[0] * (U[:, 0].reshape((1, 2)))
    point2 = mu + 1.5 * S[1] * (U[:, 1].reshape((1, 2)))
    x1 = mu[:, 0]
    y1 = mu[:, 1]
    x2 = point1[:, 0]
    y2 = point1[:, 1]
    x3 = point2[:, 0]
    y3 = point2[:, 1]
    ax1 = np.array([x1, x2])
    ax2 = np.array([x1, x3])
    ay1 = np.array([y1, y2])
    ay2 = np.array([y1, y3])
    plt.scatter(X[:, 0], X[:, 1], marker='o', c='w', edgecolors='b')
    plt.plot(ax1, ay1, c='k')
    plt.plot(ax2, ay2, c='k')
    plt.show()

def visualizePCA(X_norm,X_rec):
    plt.xlim((-3, 3))
    plt.ylim((-3, 3))
    plt.scatter(X_norm[:, 0], X_norm[:, 1], marker='o', c='w', edgecolors='b')
    plt.scatter(X_rec[:, 0], X_rec[:, 1], marker='o', c='w', edgecolors='r')
    for i in range(X_norm.shape[0]):
        x = np.array([X_norm[i, 0], X_rec[i, 0]])
        y = np.array([X_norm[i, 1], X_rec[i, 1]])
        plt.plot(x, y, 'k--')
    plt.show()

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章