圖像處理作業二

作業信息

學號:2019E8013261007
姓名:蔡少斐
班級:705
培養單位:計算技術研究所

1、證明3.44和3.45的正確性

g(x,y)=1Ki=1Kgi(x,y)g(x,y)=\frac{1}{K}\sum_{i=1}^K g_i(x,y)

E[g(x,y)]=f(x,y)+E[n(x,y)]=f(x,y)E[g(x,y)]=f(x,y)+E[n(x,y)]=f(x,y)

D[g]=E[(gE[g])2]=E[g2]E[g]2=E[f2+2f(n1+n2+...+nK)+n12+...+nK2+i,jninjK2]E[g]2=E[f2]+1KE[n2]E[f]2=1KE[n2]0=1K(E[n2]E[n]2)=1KD[n]D[g]=E[(g-E[g])^2]=E[g^2]-E[g]^2 =E[f^2+\frac{2f(n_1+n_2+...+n_K)+n_1^2+...+n_K^2+\sum_{i,j}n_in_j}{K^2}]-E[g]^2 = E[f^2]+\frac{1}{K}E[n^2]-E[f]^2=\frac{1}{K}E[n^2]-0=\frac{1}{K}(E[n^2]-E[n]^2)=\frac{1}{K}D[n]

σg(x,y)2=1Kσn(x,y)2\sigma^2_{g(x,y)} = \frac{1}{K}\sigma^2_{n(x,y)}

2、 請計算如下兩個向量與矩陣的卷積計算結果。

[1,2,3,4,5,4,3,2,1][2,0,2][1,2,3,4,5,4,3,2,1] * [2,0,-2]

a=[1,2,3,4,5,4,3,2,1],b=[2,0,2]a = [1,2 ,3, 4, 5, 4, 3, 2, 1],b =[2,0,-2]
aa的下標從0088bb的下標從0022
那麼c=abc = a*b,則cc的下標從001111
根據卷積公式:c[x]=t=ooooa[t]b[xt]c[x] = \sum_{t = -oo}^{oo} a[t]*b[x-t]
c[0]=a[0]b[0]=2c[0] = a[0]*b[0] = 2
c[1]=a[0]b[1]+a[1]b[0]=4c[1] = a[0]*b[1]+a[1]*b[0] = 4
c[2]=a[0]b[2]+a[1]b[1]+a[2]b[0]=4c[2] = a[0]*b[2]+a[1]*b[1]+a[2]*b[0] = 4
c[3]=a[1]b[2]+a[2]b[1]+a[3]b[0]=4c[3] = a[1]*b[2]+a[2]*b[1]+a[3]*b[0] = 4
c[4]=a[2]b[2]+a[3]b[1]+a[4]b[0]=4c[4] = a[2]*b[2]+a[3]*b[1]+a[4]*b[0] = 4
c[5]=a[3]b[2]+a[4]b[1]+a[5]b[0]=0c[5] = a[3]*b[2]+a[4]*b[1]+a[5]*b[0] = 0
c[6]=a[4]b[2]+a[5]b[1]+a[6]b[0]=4c[6] = a[4]*b[2]+a[5]*b[1]+a[6]*b[0] = -4
c[7]=a[5]b[2]+a[6]b[1]+a[7]b[0]=4c[7] = a[5]*b[2]+a[6]*b[1]+a[7]*b[0] = -4
c[8]=a[6]b[2]+a[7]b[1]+a[8]b[0]=4c[8] = a[6]*b[2]+a[7]*b[1]+a[8]*b[0] = -4
c[9]=a[7]b[2]+a[8]b[1]=4c[9] = a[7]*b[2]+a[8]*b[1] = -4
c[10]=a[8]b[2]2c[10] = a[8]*b[2] -2
cc數組是[2,4,4,4,0,4,4,4,2][2,4,4,4,0,-4,-4,-4,-2]

根據二維卷積公式:

c[x,y]=sta[s,t]b[xs,yt]c[x,y] = \sum_s\sum_ta[s,t]*b[x-s,y-t]

可知,卷積結果爲

[131320436444211376364153114810317711251061585646983133242]\left[ \begin{matrix} -1&3&-1&3&-2&0&4\\-3&-6&-4&4&-4&2&11\\-3&-7&-6&3&-6&4&15\\-3&-11&-4&8&-10&3&17\\-7&-11&2&5&-10&6&15\\-8&-5&6&-4&-6&9&8\\-3&-1&3&-3&-2&4&2 \end{matrix} \right]

3. 證明拉普拉斯變換具有旋轉不變形

f(x,y)=2fx2+2fy2\nabla f(x,y)=\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}
我們假設新的點爲(x1,y1)(x_1,y_1)
並且假設(x1,y1)(x_1,y_1)是由(x,y)(x,y)順時針旋轉θ\theta得到的。
那麼有公式x=x1cosθy1sinθx = x_1*cos\theta-y_1*sin\theta,y=x1sinθ+y1cosθy=x1*sin\theta+y_1*cos\theta

從而有fx1=fxxx1+fyyx1=fxcosθ+fysinθ\frac{\partial f}{\partial x_1}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial x_1} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial x_1}=\frac{\partial f}{\partial x}cos\theta+\frac{\partial f}{\partial y}sin\theta

2fx12=2fx2xx1cosθ+2fy2yx1sinθ=2fx2cos2θ+2fy2sin2θ\frac{\partial^2 f}{\partial x_1^2}=\frac{\partial^2 f}{\partial x^2}\frac{\partial x}{\partial x_1}cos\theta+\frac{\partial^2 f}{\partial y^2}\frac{\partial y}{\partial x_1}sin\theta=\frac{\partial^2 f}{\partial x^2}cos^2\theta+\frac{\partial^2 f}{\partial y^2}sin^2\theta

2fy12=2fx2xy1sinθ+2fy2yy1cosθ=2fx2sin2θ+2fy2cos2θ\frac{\partial^2 f}{\partial y_1^2}=-\frac{\partial^2 f}{\partial x^2}\frac{\partial x}{\partial y_1}sin\theta + \frac{\partial^2 f}{\partial y^2}\frac{\partial y}{\partial y_1}cos\theta=\frac{\partial^2 f}{\partial x^2}sin^2\theta+\frac{\partial^2 f}{\partial y^2}cos^2\theta

2fx12+2fy12=2fx2+2fy2\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial y_1^2} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}

證明完成。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章