傅里葉級數、傅里葉變換以及卷積定理——信號與系統小結(1)

時隔多年,趁疫情在家,重新學習鄭君里老師的信號與系統,把前面的一些概念做個小結吧,順便自己學習一下markdown語法。

下面就開始吧。BTW,markdown寫這種文檔確實好看。


1.週期函數的傅里葉級數

函數f(t)f(t)週期爲T1T_1,角頻率ω1=2πT1\omega_{1}=\frac{2 \pi}{T_{1}} ,函數的傅里葉級數如下:

f(t)=n=Fnejnω1t(1.1)f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{1} t}\tag{1.1}

Fn=1T1T12T1f(t)ejnω1tdt(1.2)F_{n}=\frac{1}{T_{1}} \int_{-\frac{T_{1}}{2}}^{T_{1}} f(t) e^{-j n\omega_{1} t} d t\tag{1.2}

2.非週期函數的傅里葉變換

f(t)f(t)的週期T1T_{1} \rightarrow \infty,得到非週期函數的傅里葉變換如下:

f(t)=12πF(ω)ejωtdω(2.1) f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega \tag{2.1}

F(ω)=f(t)ejωtdt(2.2) F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \tag{2.2}

3.週期函數的傅里葉變換和傅里葉級數的關係

F(ω)=2πn=Fnδ(ωnω1)(3.1) F(\omega)=2 \pi \sum_{n=-\infty}^{\infty} F_{n} \delta\left(\omega-n \omega_{1}\right) \tag{3.1}

4.時域卷積定理

給定兩個函數f1(t)f_1(t)f2(t)f_2(t) ,傅里葉變換如下:

F[f1(t)]=F1(ω)(4.1) \mathscr{F}\left[f_{1}(t)\right]=F_{1}(\omega) \tag{4.1}

F[f2(t)]=F2(ω)(4.2) \mathscr{F}\left[f_{2}(t)\right]=F_{2}(\omega) \tag{4.2}

則:

F[f1(t)f2(t)]=F1(ω)F2(ω)(4.3) \mathscr{F}\left[f_{1}(t) * f_{2}(t)\right]=F_{1}(\omega) F_{2}(\omega) \tag{4.3}

證明過程如下:

根據卷積定義,已知

f1(t)f2(t)=f1(τ)f2(tτ)dτ(4.4) f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) \cdot f_{2}(t-\tau) d \tau \tag{4.4}

那麼:

F[f1(t)f2(t)]=[f1(τ)f2(tτ)dτ]ejωtdt=f1(τ)[f2(tτ)ejωtdt]dτ=f1(τ)[f2(tτ)ejω(tτ)ejωτdt]dτ=f1(τ)F2(ω)ejω(tτ)dt]ejωτdτ=f1(τ)F2(ω)ejωτdτ=F1(ω)F2(ω)(4.5) \begin{aligned} \mathscr{F}\left[f_{1}(t)^{*} f_{2}(t)\right] &=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau\right] e^{-j \omega t} d t \\ &=\int_{-\infty}^{\infty} f_{1}(\tau)\left[\int_{-\infty}^{\infty} f_{2}(t-\tau) \mathrm{e}^{-j \omega t} \mathrm{d} t\right] \mathrm{d} \tau \\ &=\int_{-\infty}^{\infty} f_{1}(\tau)\left[\int_{-\infty}^{\infty} f_{2}(t-\tau) \mathrm{e}^{-j \omega(t-\tau)} \mathrm{e}^{-j \omega \tau} \mathrm{d} t\right] \mathrm{d} \tau \\ &\left.=\int_{-\infty}^{\infty} f_{1}(\tau) F_{2}(\omega) e^{-j \omega(t-\tau)} \mathrm{d} \mathrm{t}\right] \mathrm{e}^{-j \omega \tau} \mathrm{d} \tau \\ &=\int_{-\infty}^{\infty} f_{1}(\tau) F_{2}(\omega) e^{-j \omega \tau} d \tau \\ &=F_{1}(\omega) \cdot F_{2}(\omega) \end{aligned} \tag{4.5}

證畢。

5.頻域卷積定理

給定兩個函數f1(t)f_1(t)f2(t)f_2(t) ,傅里葉變換如下:

F[f1(t)]=F1(ω)(5.1) \mathscr{F}\left[f_{1}(t)\right]=F_{1}(\omega) \tag{5.1}

F[f2(t)]=F2(ω)(5.2) \mathscr{F}\left[f_{2}(t)\right]=F_{2}(\omega) \tag{5.2}

則:

F[f1(t)f2(t)]=12πF1(ω)F2(ω)(5.3) \mathscr{F}\left[f_{1}(t) \cdot f_{2}(t)\right]=\frac{1}{2 \pi} F_{1}(\omega) * F_{2}(\omega) \tag{5.3}

證明過程如下:

根據卷積定義,已知

F1(ω)F2(ω)=F1(μ)F2(ωμ)dμ(5.4) F_{1}(\omega) * F_{2}(\omega)=\int_{-\infty}^{\infty} F_{1}(\mu) \cdot F_{2}(\omega-\mu) d \mu \tag{5.4}

那麼

F1[12πF1(ω)F2(ω)]=12π12π[F1(μ)F2(ωμ)dμ]ejωtdω=12πF1(μ)[12πF2(ωμ)ejωtdω]dμ=12πF1(μ)[12πF2(ωμ)ej(ωμ)tdω)ejμtdμ=12πF1(μ)f2(t)ejμtdμ=f2(t)12πF1(μ)ejμtdμ=f1(t)f2(t)(5.5) \begin{aligned} \mathcal{F}^{-1}\left[\frac{1}{2 \pi} F_{1}(\omega) * F_{2}(\omega)\right] &=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{2 \pi}\left[\int_{-\infty}^{\infty} F_{1}(\mu) \cdot F_{2}(\omega-\mu) d \mu\right] e^{j \omega t} d \omega \\ &=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F_{1}(\mu)\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} F_{2}(\omega-\mu) e^{j \omega t} d \omega\right] d \mu \\ &=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F_{1}(\mu)\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} F_{2}(\omega-\mu) e^{j(\omega-\mu) t} d \omega\right) e^{j \mu t} d \mu \\ &=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F_{1}(\mu) f_{2}(t) e^{j \mu t} d \mu \\ &=f_{2}(t) \cdot \frac{1}{2 \pi} \int_{-\infty}^{\infty} F_{1}(\mu) e^{j \mu t} d \mu \\ &=f_{1}(t) \cdot f_{2}(t) \end{aligned} \tag{5.5}

證畢。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章