PCIe Electrical PHY(5)-PCIe的時鐘結構

1.1 常用的時鐘結構

Three basic I/O architectures
• Common Clock (Synchronous)
• Forward Clock (Source Synchronous)
• Embedded Clock (Clock Recovery)
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述

1.2 PCIE時鐘結構

在這裏插入圖片描述

1.2.1 CC mode(common Refclk Rx Architecture)

在這裏插入圖片描述
在這裏插入圖片描述
Most of the SSC jitter sourced by the Refclk is propagated equally through Tx and Rx PLLs, and so intrinsically tracks LF jitter. This is particularly true for SSC which tends to be low frequency.
因爲TJ中的低頻分量主要來自SSC,CC mode下在Rx看到的jitter經過H1(s)-H2(s)系統,低頻分量減小,導致LF jitter變小。
但這種好處的前提是Tx-Rx的delay不能過大,所以spec中規定Tx-Rx transport delay<12ns(only for CC mode)

1.2.2 IR mode

Separate Refclk Independent SSC (SRIS) Architecture
Separate Reference Clocks With No SSC (SRNS) Architecture

The maximum difference with SRNS is 600 ppm which can result in a clock shift once every 1666 clocks. The maximum difference with SRIS is 5600 ppm which can result in a clock shift every 178 clocks.
在這裏插入圖片描述

1.2.3 Refclk jitter computation

1.2.3.1 CC clock

Cc mode下需要計算兩個PLL 帶寬疊加起來的效果,PCIe spec中給出了不同的帶寬組合,下圖以pcie1.1爲例計算的jitter傳輸函數。
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述

1.2.3.2 Data clock

在這裏插入圖片描述
在這裏插入圖片描述

1.2.3.3 SRNS

The PCIe standards do not specify jitter limits for this clock architecture, although it states that jitter must be considerably tighter than for the other two architectures
在這裏插入圖片描述

1.2.3.4 SRIS

This architecture now burdens the RX with tracking and rejecting the phase shift between the RX and TX that is inherent in the two independent refclks with SSC. The ability to support this architecture requires the CDR to have a second order high-pass filter in the transfer function in order to reject the phase shift that is inherent in the independent SSC implementation

在這裏插入圖片描述

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章