加速度S形算法:濾波方式下的公式推導

原始速度函數

設初始速度爲v0v_0,最大加速度爲ama_m,加速時間爲t1t_1,濾波時間爲t2t_2,於是有
v(t)=v0+amt,t[0, t1]f(t)=π2t2sin(πt2t),t[0, t2] \begin{aligned} &v(t)=v_0+a_mt, && t\in[0,\ t_1] \\ &f(t)=\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}t), && t\in[0,\ t_2] \\ \end{aligned}

構造濾波速度函數

vm=v0+amt1v_m=v_0+a_mt_1
v(t)={v0,t[0, t2]v0+am(tt2),t[t2, t1+t2]vm,t[t1+t2, t1+2t2]f(t)=π2t2sin(πt2t),t[0,t2] \begin{aligned} &v(t)=\begin{cases} v_0, & t\in[0,\ t_2] \\ v_0+a_m(t-t_2), & t\in[t_2,\ t_1+t_2] \\ v_m, & t\in[t_1+t_2,\ t_1+2t_2] \\ \end{cases} \\ &f(t)=\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}t),\qquad\quad t\in[0,t_2] \end{aligned}
V(t)=v(x)f(x)=v(tx)f(x)dxV(t)=v(x)*f(x)=\int^\infty_{-\infty}v(t-x)\cdot f(x)dx,則被積函數的非零定義域爲
{0txt1+2t20xt2{t(t1+2t2)xt0xt2\begin{aligned} \begin{cases} 0\leqslant t-x\leqslant t_1+2t_2 \\ 0\leqslant x\leqslant t_2 \\ \end{cases} \quad\Longrightarrow \begin{cases} t-(t_1+2t_2)\leqslant x\leqslant t \\ 0\leqslant x\leqslant t_2 \\ \end{cases} \end{aligned}

推導濾波速度公式

根據t1t_1t2t_2的大小,分別推導濾波速度公式V(t)V(t)

t1t2t_1\geqslant t_2

t<0t<0
V(t)0. V(t)\equiv 0.
0tt20\leqslant t\leqslant t_2
V(t)=0tv0π2t2sin(πt2x)dx=v02cos(πt2x)0t=v02v02cos(πt2t). V(t)=\int^t_0v_0\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx=-\dfrac{v_0}{2}\cos(\dfrac{\pi}{t_2}x)\Bigg|^t_0=\dfrac{v_0}{2}-\dfrac{v_0}{2}\cos(\dfrac{\pi}{t_2}t).

t2t2t2t_2\leqslant t\leqslant 2t_2
V(t)=tt2t2v0π2t2sin(πt2x)dx+0tt2[v0+am(txt2)]π2t2sin(πt2x)dx=v02cos(πt2x)tt2t2+[12(v0+amtamt2)cos(πt2x)+am2xcos(πt2x)am2t2πsin(πt2x)]0tt2=v02+v02cos(πt2(tt2))+[12(v0+amtamt2)cos(πt2(tt2))+am2(tt2)cos(πt2(tt2))am2t2πsin(πt2(tt2))][12(v0+amtamt2)]=v0+am2(tt2)amt22πsin(πt2(tt2)).\begin{aligned} V(t)=&\int_{t-t_2}^{t_2}v_0\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx+\int^{t-t_2}_0[v_0+a_m(t-x-t_2)]\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx \\ =&-\dfrac{v_0}{2}\cos(\dfrac{\pi}{t_2}x)\Bigg|^{t_2}_{t-t_2} \\ &+\left[-\dfrac{1}{2}(v_0+a_mt-a_mt_2)\cos(\dfrac{\pi}{t_2}x)+\dfrac{a_m}{2}x\cos(\dfrac{\pi}{t_2}x)-\dfrac{a_m}{2}\cdot\dfrac{t_2}{\pi}\sin(\dfrac{\pi}{t_2}x)\right]\Bigg|_0^{t-t_2} \\ =&\dfrac{v_0}{2}+\dfrac{v_0}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_2)\right) +\left[-\dfrac{1}{2}(v_0+a_mt-a_mt_2)\cos\left(\dfrac{\pi}{t_2}(t-t_2)\right)\right. \\ &\left. +\dfrac{a_m}{2}(t-t_2)\cos\left(\dfrac{\pi}{t_2}(t-t_2)\right) -\dfrac{a_m}{2}\cdot\dfrac{t_2}{\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_2)\right) \right] \\ &-\left[-\dfrac{1}{2}(v_0+a_mt-a_mt_2)\right] \\ =&v_0+\dfrac{a_m}{2}(t-t_2)-\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_2)\right). \end{aligned}
2t2tt1+t22t_2\leqslant t\leqslant t_1+t_2
V(t)=0t2[v0+am(txt2)]π2t2sin(πt2x)dx=[12(v0+amtamt2)cos(πt2x)+am2xcos(πt2x)am2t2πsin(πt2x)]0t2=12(v0+amtamt2)am2t2[12(v0+amtamt2)]=v0+amt32amt2.\begin{aligned} V(t)=&\int_0^{t_2}[v_0+a_m(t-x-t_2)]\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx \\ =&\left[-\dfrac{1}{2}(v_0+a_mt-a_mt_2)\cos(\dfrac{\pi}{t_2}x)+\dfrac{a_m}{2}x\cos(\dfrac{\pi}{t_2}x)-\dfrac{a_m}{2}\cdot\dfrac{t_2}{\pi}\sin(\dfrac{\pi}{t_2}x)\right]\Bigg|^{t_2}_0 \\ =&\dfrac{1}{2}(v_0+a_mt-a_mt_2)-\dfrac{a_m}{2}t_2-[-\dfrac{1}{2}(v_0+a_mt-a_mt_2)] \\ =&v_0+a_mt-\dfrac{3}{2}a_mt_2. \end{aligned}
t1+t2tt1+2t2t_1+t_2\leqslant t\leqslant t_1+2t_2
V(t)=tt1t2t2[v0+am(txt2)]π2t2sin(πt2x)dx+0tt1t2vmπ2t2sin(πt2x)dx=[12(v0+amtamt2)cos(πt2x)+am2xcos(πt2x)am2t2πsin(πt2x)]tt1t2t2vm2cos(πt2x)0tt1t2=12(v0+amtamt2)am2t2[12(v0+amtamt2)cos(πt2(tt1t2))+am2(tt1t2)cos(πt2(tt1t2))am2t2πsin(πt2(tt1t2))]vm2cos(πt2(tt1t2))+vm2=12(v0+vm)+12amtamt2+amt22πsin(πt2(tt1t2)).\begin{aligned} V(t)=&\int_{t-t_1-t_2}^{t_2}[v_0+a_m(t-x-t_2)]\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx +\int_0^{t-t_1-t_2}v_m\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx \\ =&\left[-\dfrac{1}{2}(v_0+a_mt-a_mt_2)\cos(\dfrac{\pi}{t_2}x) +\dfrac{a_m}{2}x\cos(\dfrac{\pi}{t_2}x)-\dfrac{a_m}{2}\cdot\dfrac{t_2}{\pi}\sin(\dfrac{\pi}{t_2}x)\right]\Bigg|^{t_2}_{t-t_1-t_2} \\ &-\dfrac{v_m}{2}\cos(\dfrac{\pi}{t_2}x)\Bigg|_0^{t-t_1-t_2} \\ =&\dfrac{1}{2}(v_0+a_mt-a_mt_2)-\dfrac{a_m}{2}t_2 -\left[-\dfrac{1}{2}(v_0+a_mt-a_mt_2)\cos\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right) \right. \\ &\left. +\dfrac{a_m}{2}(t-t_1-t_2)\cos\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right) -\dfrac{a_m}{2}\cdot\dfrac{t_2}{\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right)\right] \\ &-\dfrac{v_m}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right)+\dfrac{v_m}{2} \\ =&\dfrac{1}{2}(v_0+v_m)+\dfrac{1}{2}a_mt-a_mt_2+\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right). \end{aligned}
t1+2t2tt1+3t2t_1+2t_2\leqslant t\leqslant t_1+3t_2
V(t)=tt12t2t2vmπ2t2sin(πt2x)dx=vm2cos(πt2x)tt12t2t2=vm2+vm2cos(πt2(tt12t2)).\begin{aligned} V(t)=&\int_{t-t_1-2t_2}^{t_2}v_m\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx \\ =&-\dfrac{v_m}{2}\cos(\dfrac{\pi}{t_2}x)\Bigg|_{t-t_1-2t_2}^{t_2} \\ =&\dfrac{v_m}{2}+\dfrac{v_m}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_1-2t_2)\right). \end{aligned}
t>t1+3t2t>t_1+3t_2
V(t)0. V(t)\equiv 0.

t1<t2t_1<t_2

t<0t<0
V(t)0. V(t)\equiv 0.
0tt20\leqslant t\leqslant t_2
V(t)=0tv0π2t2sin(πt2x)dx=v02v02cos(πt2t). V(t)=\int_0^tv_0\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx=\dfrac{v_0}{2}-\dfrac{v_0}{2}\cos(\dfrac{\pi}{t_2}t).
t2tt1+t2t_2\leqslant t\leqslant t_1+t_2
V(t)=tt2t2v0π2t2sin(πt2x)dx+0tt2[v0+am(txt2)]π2t2sin(πt2x)dx=v0+am2(tt2)amt22πsin(πt2(tt2)).\begin{aligned} V(t)=&\int_{t-t_2}^{t_2}v_0\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx +\int_0^{t-t_2}[v_0+a_m(t-x-t_2)]\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx \\ =&v_0+\dfrac{a_m}{2}(t-t_2)-\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_2)\right). \end{aligned}
t1+t2t2t2t_1+t_2\leqslant t\leqslant 2t_2
V(t)=tt2t2v0π2t2sin(πt2x)dx+tt1t2tt2[v0+am(txt2)]π2t2sin(πt2x)dx+0tt1t2vmπ2t2sin(πt2x)dx=v02cos(πt2x)tt2t2+[12(v0+amtamt2)cos(πt2x)+am2xcos(πt2x)am2t2πsin(πt2x)]tt1t2tt2vm2cos(πt2x)0tt1t2=v02+v02cos(πt2(tt2))+[12(v0+amtamt2)cos(πt2(tt2))+am2(tt2)cos(πt2(tt2))amt22πsin(πt2(tt2))][12(v0+amtamt2)cos(πt2(tt1t2))+am2(tt1t2)cos(πt2(tt1t2))amt22πsin(πt2(tt1t2))]vm2cos(πt2(tt1t2))+vm2=12(v0+vm)amt22πsin(πt2(tt2))+amt22πsin(πt2(tt1t2)).\begin{aligned} V(t)=&\int_{t-t_2}^{t_2}v_0\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx +\int_{t-t_1-t_2}^{t-t_2}[v_0+a_m(t-x-t_2)]\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx \\ &+\int_0^{t-t_1-t_2}v_m\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx \\ =&-\dfrac{v_0}{2}\cos(\dfrac{\pi}{t_2}x)\Bigg|^{t_2}_{t-t_2} \\ &+\left[-\dfrac{1}{2}(v_0+a_mt-a_mt_2)\cos(\dfrac{\pi}{t_2}x) +\dfrac{a_m}{2}x\cos(\dfrac{\pi}{t_2}x) -\dfrac{a_m}{2}\cdot\dfrac{t_2}{\pi}\sin(\dfrac{\pi}{t_2}x)\right]\Bigg|^{t-t_2}_{t-t_1-t_2} \\ &-\dfrac{v_m}{2}\cos(\dfrac{\pi}{t_2}x)\Bigg|_0^{t-t_1-t_2} \\ =&\dfrac{v_0}{2}+\dfrac{v_0}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_2)\right) +\left[ -\dfrac{1}{2}(v_0+a_mt-a_mt_2)\cos\left(\dfrac{\pi}{t_2}(t-t_2)\right)\right. \\ &\left.+\dfrac{a_m}{2}(t-t_2)\cos\left(\dfrac{\pi}{t_2}(t-t_2)\right) -\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_2)\right) \right] \\ &-\left[-\dfrac{1}{2}(v_0+a_mt-a_mt_2)\cos\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right) \right. \\ &\left.+\dfrac{a_m}{2}(t-t_1-t_2)\cos\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right) -\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right) \right] \\ &-\dfrac{v_m}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right)+\dfrac{v_m}{2} \\ =&\dfrac{1}{2}(v_0+v_m)-\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_2)\right) +\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right). \end{aligned}
2t2tt1+2t22t_2\leqslant t\leqslant t_1+2t_2
V(t)=tt1t2t2[v0+am(txt2)]π2t2sin(πt2x)dx+0tt1t2vmπ2t2sin(πt2x)dx=12(v0+vm)+12amtamt2+amt22πsin(πt2(tt1t2)).\begin{aligned} V(t)=&\int_{t-t_1-t_2}^{t_2}[v_0+a_m(t-x-t_2)]\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx +\int_0^{t-t_1-t_2}v_m\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx \\ =&\dfrac{1}{2}(v_0+v_m)+\dfrac{1}{2}a_mt-a_mt_2+\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right). \end{aligned}
t1+2t2tt1+3t2t_1+2t_2\leqslant t\leqslant t_1+3t_2
V(t)=tt12t2t2vmπ2t2sin(πt2x)dx=vm2+vm2cos(πt2(tt12t2)). V(t)=\int_{t-t_1-2t_2}^{t_2}v_m\cdot\dfrac{\pi}{2t_2}\sin(\dfrac{\pi}{t_2}x)dx =\dfrac{v_m}{2}+\dfrac{v_m}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_1-2t_2)\right).
t>t1+3t2t>t_1+3t_2
V(t)0. V(t)\equiv 0.

濾波速度公式

t2tt1+2t2t_2\leqslant t\leqslant t_1+2t_2 時的濾波速度函數作爲濾波速度公式,則有

t1t2t_1\geqslant t_2
V(t)={v0+am2(tt2)amt22πsin(πt2(tt2)), t2t2t2v0+amt32amt2, 2t2tt1+t212(v0+vm)+12amtamt2+amt22πsin(πt2(tt1t2)), t1+t2tt1+2t2\begin{aligned} V(t)=\begin{cases} v_0+\dfrac{a_m}{2}(t-t_2)-\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_2)\right), & 若\ t_2\leqslant t\leqslant 2t_2 \\ v_0+a_mt-\dfrac{3}{2}a_mt_2, & 若\ 2t_2\leqslant t\leqslant t_1+t_2 \\ \dfrac{1}{2}(v_0+v_m)+\dfrac{1}{2}a_mt-a_mt_2+\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right), & 若\ t_1+t_2\leqslant t\leqslant t_1+2t_2 \end{cases} \end{aligned}
t1<t2t_1 < t_2
V(t)={v0+am2(tt2)amt22πsin(πt2(tt2)), t2tt1+t212(v0+vm)amt22πsin(πt2(tt2))+amt22πsin(πt2(tt1t2)), t1+t2t2t212(v0+vm)+12amtamt2+amt22πsin(πt2(tt1t2)), 2t2tt1+2t2\begin{aligned} V(t)=\begin{cases} v_0+\dfrac{a_m}{2}(t-t_2)-\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_2)\right), & 若\ t_2\leqslant t\leqslant t_1+t_2 \\ \dfrac{1}{2}(v_0+v_m)-\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_2)\right) +\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right), & 若\ t_1+t_2\leqslant t\leqslant 2t_2 \\ \dfrac{1}{2}(v_0+v_m)+\dfrac{1}{2}a_mt-a_mt_2+\dfrac{a_mt_2}{2\pi}\sin\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right), & 若\ 2t_2\leqslant t\leqslant t_1+2t_2 \end{cases} \end{aligned}

濾波速度公式的導數及積分

加速度公式

濾波速度公式的一階導數,如下

t1t2t_1\geqslant t_2
V(t)={am2am2cos(πt2(tt2)), t2t2t2am, 2t2tt1+t2am2+am2cos(πt2(tt1t2)), t1+t2tt1+2t2\begin{aligned} V'(t)=\begin{cases} \dfrac{a_m}{2}-\dfrac{a_m}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_2)\right), & 若\ t_2\leqslant t\leqslant 2t_2 \\ a_m, & 若\ 2t_2\leqslant t\leqslant t_1+t_2 \\ \dfrac{a_m}{2}+\dfrac{a_m}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right), & 若\ t_1+t_2\leqslant t\leqslant t_1+2t_2 \\ \end{cases} \end{aligned}
t1<t2t_1<t_2
V(t)={am2am2cos(πt2(tt2)), t2tt1+t2am2cos(πt2(tt2))+am2cos(πt2(tt1t2)), t1+t2t2t2am2+am2cos(πt2(tt1t2)), 2t2tt1+2t2\begin{aligned} V'(t)=\begin{cases} \dfrac{a_m}{2}-\dfrac{a_m}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_2)\right), & 若\ t_2\leqslant t\leqslant t_1+t_2 \\ -\dfrac{a_m}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_2)\right) +\dfrac{a_m}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right), & 若\ t_1+t_2\leqslant t\leqslant 2t_2 \\ \dfrac{a_m}{2}+\dfrac{a_m}{2}\cos\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right), & 若\ 2t_2\leqslant t\leqslant t_1+2t_2 \\ \end{cases} \end{aligned}

加加速度公式

濾波速度公式的二階導數,如下

t1t2t_1\geqslant t_2
V(t)={amπ2t2sin(πt2(tt2)), t2t2t20, 2t2<t<t1+t2amπ2t2sin(πt2(tt1t2)), t1+t2tt1+2t2\begin{aligned} V''(t)=\begin{cases} \dfrac{a_m\pi}{2t_2}\sin\left(\dfrac{\pi}{t_2}(t-t_2)\right), & 若\ t_2\leqslant t\leqslant 2t_2 \\ 0, & 若\ 2t_2<t<t_1+t_2 \\ -\dfrac{a_m\pi}{2t_2}\sin\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right), & 若\ t_1+t_2\leqslant t\leqslant t_1+2t_2 \\ \end{cases} \end{aligned}
t1<t2t_1<t_2
V(t)={amπ2t2sin(πt2(tt2)), t2tt1+t2amπ2t2sin(πt2(tt2))amπ2t2sin(πt2(tt1t2)), t1+t2<t<2t2amπ2t2sin(πt2(tt1t2)), 2t2tt1+2t2\begin{aligned} V''(t)=\begin{cases} \dfrac{a_m\pi}{2t_2}\sin\left(\dfrac{\pi}{t_2}(t-t_2)\right), & 若\ t_2\leqslant t\leqslant t_1+t_2 \\ \dfrac{a_m\pi}{2t_2}\sin\left(\dfrac{\pi}{t_2}(t-t_2)\right) -\dfrac{a_m\pi}{2t_2}\sin\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right), & 若\ t_1+t_2<t<2t_2 \\ -\dfrac{a_m\pi}{2t_2}\sin\left(\dfrac{\pi}{t_2}(t-t_1-t_2)\right), & 若\ 2t_2\leqslant t\leqslant t_1+2t_2 \\ \end{cases} \end{aligned}
此即爲加速度S形算法的加加速度公式,若已知系統最大加加速度爲JmJ_m,則可以令 amπ2t2=Jm\dfrac{a_m\pi}{2t_2}=J_m,於是有 t2=amπ2Jmt_2=\dfrac{a_m\pi}{2J_m}

距離公式

根據加速度公式的對稱性,按照幾何意義積分,可以得到運動距離的公式爲
s=12(v0+vm)(t1+t2) s=\dfrac{1}{2}(v_0+v_m)(t_1+t_2)
其中 vm=v0+amt1t1=vmv0am, t2=amπ2Jmv_m=v_0+a_mt_1\quad \Leftrightarrow\quad t_1=\dfrac{v_m-v_0}{a_m},\ t_2=\dfrac{a_m\pi}{2J_m}

以上就是濾波方式下加速度S形算法的連續表達式形式。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章