數理統計與數據分析第三版習題 第3章 第54-69題

題目54

XX,YYZZ是獨立的N(0,σ2)N(0,{\sigma}^2).隨機變量Θ,ΦR\Theta,\Phi和R(X,Y,Z)(X,Y,Z)的球形座標:
x=rsinϕcosθy=rsinϕsinθz=rcosϕ0ϕπ,0θ2π \begin{aligned} x&=rsin\phi cos\theta\\ y&=rsin\phi sin\theta\\ z&=rcos\phi\\ 0\leq \phi&\leq \pi, 0\leq \theta\leq 2\pi \end{aligned}
計算Θ,ΦR\Theta,\Phi和R的聯合密度和邊際密度.(提示:dxdydz=r2sinϕdrdθdϕdxdydz=r^2sin\phi drd\theta d\phi)

解題思路

根據球形座標的轉換提示,我們直接求聯合密度:
fR,Φ,Θ(r,ϕ,θ)=fX,Y,Z(rsinϕcosθ,rsinϕsinθ,rcosϕ)r2sinϕ=12πσe(rsinϕcosθ)22σ212πσe(,rsinϕsinθ)22σ212πσe(rcosϕ)22σ2r2sinϕ=(2π)32σ3er2sin2ϕcos2θ+r2sin2ϕsin2θ+r2cos2ϕ2σ2r2sinϕ=sinϕ12π12π1σ3r2er22σ2 \begin{aligned} f_{R,\Phi,\Theta}(r,\phi,\theta)&=f_{X,Y,Z}(rsin\phi cos\theta,rsin\phi sin\theta,rcos\phi) r^2sin\phi\\ &=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(rsin\phi cos\theta)^2}{2\sigma^2}}\cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(,rsin\phi sin\theta)^2}{2\sigma^2}} \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(rcos\phi)^2}{2\sigma^2}} r^2 \sin\phi\\ &={(2\pi)}^{-\frac32} \cdot \sigma^{-3}\cdot e^{-\frac{r^2sin^2\phi cos^2\theta+r^2\sin^2\phi \sin^2\theta+r^2\cos^2\phi}{2\sigma^2}}r^2 \sin\phi\\ &=\sin\phi \cdot \frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\cdot r^2 \cdot e^{-\frac{r^2}{2\sigma^2}} \end{aligned}

求邊際密度
fr(r)=0π02πfR,Φ,Θ(r,ϕ,θ)dθdϕ=12π12π1σ30π02πsinϕr2er22σ2dθdϕ=12π12π1σ30πsinϕdϕ02πdθr2er22σ2=12π12π1σ322πr2er22σ2=2πσ3r2er22σ2 \begin{aligned} f_r(r)&=\int_0^\pi\int_0^{2\pi}f_{R,\Phi,\Theta}(r,\phi,\theta)d\theta d\phi\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\int_0^\pi\int_0^{2\pi}\sin\phi\cdot r^2\cdot e^{-\frac{r^2}{2\sigma^2}}d\theta d\phi\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\int_0^\pi\sin\phi d\phi \cdot\int_0^{2\pi}d\theta \cdot r^2e^{-\frac{r^2}{2\sigma^2}}\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3} \cdot 2 \cdot 2\pi \cdot r^2e^{-\frac{r^2}{2\sigma^2}}\\ &=\frac{\sqrt2}{\sqrt\pi \sigma^3}r^2e^{-\frac{r^2}{2\sigma^2}} \end{aligned}
fΦ(ϕ)=002πfR,Φ,Θ(r,ϕ,θ)dθdr=12π12π1σ3002πsinϕr2er22σ2dθdr=12π12π1σ3sinϕ02πdθ0r2er22σ2dr=12π12π1σ3sinϕ2ππ2σ3=sinϕ2 \begin{aligned} f_\Phi(\phi)&=\int_0^{\infty}\int_0^{2\pi}f_{R,\Phi,\Theta}(r,\phi,\theta)d\theta dr\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\int_0^\infty\int_0^{2\pi}\sin\phi\cdot r^2\cdot e^{-\frac{r^2}{2\sigma^2}}d\theta dr\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\cdot \sin\phi \cdot \int_0^{2\pi}d\theta \int_0^\infty r^2e^{-\frac{r^2}{2\sigma^2}} dr\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3} \cdot \sin\phi \cdot 2\pi \cdot \frac{\sqrt\pi}{\sqrt2}\sigma^3\\ &=\frac{\sin\phi}{2} \end{aligned}
fΘ(θ)=00πfR,Φ,Θ(r,ϕ,θ)dϕdr=12π12π1σ30πsinϕdϕ0r2er22σ2dr=12π12π1σ32π2σ3=12π \begin{aligned} f_\Theta(\theta)&=\int_0^{\infty}\int_0^{\pi}f_{R,\Phi,\Theta}(r,\phi,\theta)d\phi dr\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\int_0^{\pi}\sin\phi d\phi \cdot \int_0^\infty r^2\cdot e^{-\frac{r^2}{2\sigma^2}}dr\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\cdot 2 \cdot \frac{\sqrt\pi}{\sqrt2}\sigma^3\\ &=\frac1{2\pi} \end{aligned}
fR,Φ,Θ(r,ϕ,θ)=fr(r)fΦ(ϕ)fΘ(θ)f_{R,\Phi,\Theta}(r,\phi,\theta)=f_r(r)f_\Phi(\phi)f_\Theta(\theta)三個變量轉換爲球形座標後也是獨立的。

計算上邊三個邊際密度時,有一個關鍵積分公式:
0x2nex2α2dx=π(2n)!n!(α2)2n+1\int_0^\infty x^{2n}e^{-\frac{x^2}{\alpha^2}}dx=\sqrt\pi\frac{(2n)!}{n!}(\frac{\alpha}{2})^{2n+1}

題目55

從單位元內部按如下規則生成一點:半徑R是[0,1]上的均勻隨機變量,角度Θ[0,2π]\Theta是[0,2\pi]上我均勻隨機變量,並且與R獨立

a.計算X=Rcosθ,Y=RsinθX=R\cos\theta,Y=R\sin\theta的隨便密度
b.計算XYX和Y的邊際密度
c.密度是圓盤上的均勻分佈嗎?如果不是修正該方法是密度是均勻分佈

解題思路

a.
RU[0,1]ΘU[0,2π](X=RcosΘ,Y=RsinΘ)(R=X2+Y2,Θ=tan1YX)J=rxryθxθy=1x2+y2fXY(x,y)=fRΘ(x2+y2,tan1yx)1x2+y2=12π1x2+y2x2+y21 \begin{aligned} &R\sim U[0,1]\\ &\Theta\sim U[0,2\pi]\\ &(X=R\cos\Theta,Y=R\sin\Theta)\Rightarrow (R=\sqrt{X^2+Y^2},\Theta=\tan^{-1}\frac{Y}{X})\\ &|J|=\begin{Vmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{Vmatrix} =\frac{1}{\sqrt{x^2+y^2}}\\ f_{XY}(x,y)&=f_{R\Theta}(\sqrt{x^2+y^2},\tan^{-1}\frac{y}{x})\cdot\frac{1}{\sqrt{x^2+y^2}}\\ &=\frac1{2\pi}\cdot\frac{1}{\sqrt{x^2+y^2}} \qquad x^2+y^2\leq 1 \end{aligned}
b.計算XYX和Y的邊際密度
fX(x)=1x21x2fXY(x,y)dy=1x21x212π1x2+y2dy=1π01x21x2+y2dy=1π[ln(y+x2+y2)]01x2=1πln(1x2+1x)1x1fY(y)=1πln(1y2+1y)1y1 \begin{aligned} f_X(x)&=\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}f_{XY}(x,y)dy\\ &=\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\frac1{2\pi}\cdot\frac{1}{\sqrt{x^2+y^2}}dy\\ &=\frac1\pi\int_{0}^{\sqrt{1-x^2}}\frac{1}{\sqrt{x^2+y^2}}dy\\ &=\frac1\pi[\ln(y+\sqrt{x^2+y^2})] \Bigg |_0^{\sqrt{1-x^2}}\\ &=\frac1\pi\ln(\frac{\sqrt{1-x^2}+1}{|x|}) \quad -1\leq x \leq 1\\ 同樣道理:\\ f_Y(y)=&\frac1\pi\ln(\frac{\sqrt{1-y^2}+1}{|y|}) \quad -1\leq y \leq 1\\ \end{aligned}
c.密度是圓盤上的均勻分佈嗎?如果不是修正該方法是密度是均勻分佈
fR(r)=1FR(r)=r \begin{aligned} f_R(r)=1\Rightarrow F_R(r)=r \end{aligned}
如果要在圓盤上均勻分佈,則應該按面積進行均勻分佈如果整個圓是1 ,則:
FR(r)=2πr22π=r2r!=r2F_R(r)=\frac{2\pi r^2}{2\pi}=r^2 很明顯 r!=r^2,不是均勻分佈

FR(r)=r2fR(r)=2rF_R(r)=r^2\Rightarrow f_R(r)=2r

fRΘ(r,θ)=2r12π=rπf_{R\Theta}(r,\theta)=2r\cdot\frac1{2\pi}=\frac r\pi

題目56

如果XXYY是獨立的隨機變量,計算點XY(X,Y)的極座標R和Θ\Theta的聯合分佈,R和Θ\Theta獨立嗎?

解題思路

未找到答案

題目57

假設Y1Y_1Y2Y_2服從二元正態分佈,具有參數μY1=μY2=0,σY12=1,σY22=2,ρ=1/2\mu_{Y_1}=\mu_{Y_2}=0,\sigma_{Y_1}^2=1,\sigma_{Y_2}^2=2,且\rho=1/\sqrt{2}.線性變換 x1=a11y1+a12y2,x2=a21y1+a22y2x_1=a_{11}y_1+a_{12}y_2,x_2=a_{21}y_1+a_{22}y_2 使得x1x_1x2x_2是獨立的標準的正態分佈?

解題思路

幾個關鍵公式
1.二元正態分佈密度函數
f(y1,y2)=12πσY1σy21ρ2exp[12(1ρ2)((y1μY1)2σy122ρ(y1μY1)(y2μY2)σY1σY2+(y2μY2)2σy22)] f(y_1,y_2)=\frac{1}{2\pi\sigma_{Y_1}\sigma_{y_2}\sqrt{1-\rho^2}}exp{\left [ -\frac{1}{2(1-\rho^2)}\left( \frac{(y_1-\mu_{Y_1})^2}{\sigma_{y_1}^2}-\frac{2\rho(y_1-\mu_{Y_1})(y_2-\mu_{Y_2})}{\sigma_{Y_1}\sigma_{Y_2}}+ \frac{(y_2-\mu_{Y_2})^2}{\sigma_{y_2}^2}\right)\right]}
2.設(Y1,Y2)N(μY1,μY2,σY12,σY22,ρ)(Y_1,Y_2)\sim N(\mu_{Y_1},\mu_{Y_2},\sigma_{Y_1}^2,\sigma_{Y_2}^2,\rho)Y1Y_1Y2Y_2的線性組合仍然服從正態分佈,且aY1+bY2N(aμY1+bμY2,a2σY12+b2σY22+2abρσY1σY2)aY_1+bY_2 \sim N(a\mu_{Y_1}+b\mu_{Y_2},a^2\sigma_{Y_1}^2+b^2\sigma_{Y_2}^2+2ab\rho\sigma_{Y_1}\sigma_{Y_2})

步驟1.求出(X1,X2)(X_1,X_2)的聯合密度函數
J(y1,y2)=x1y1x1y2x2y1x2y2=a11a12a21a22=a11a22a12a21 J(y_1,y_2)=\begin{Vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{Vmatrix} =\begin{Vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{Vmatrix}=a_{11}a_{22}-a_{12}a_{21}
y1=a12x2a22x1a12a21a22a11y2=a11x2a21x1a22a11a21a12fX1X2(x1,x2)=J1(y1,y2)fY1Y2(a12x2a22x1a12a21a22a11,a11x2a21x1a22a11a21a12):=1a11a22a12a2112πexp[((y1)21212y1y212+(y2)22)]=1a11a22a12a2112πexp[((a12x2a22x1a12a21a22a11)2(a12x2a22x1a12a21a22a11)(a11x2a21x1a22a11a21a12)+(a11x2a21x1a22a11a21a12)22)] \begin{aligned} y_1&=\frac{a_{12}x_2-a_{22}x_1}{a_{12}a_{21}-a_{22}a_{11}}\\ y_2&=\frac{a_{11}x_2-a_{21}x_1}{a_{22}a_{11}-a_{21}a_{12}}\\ f_{X_1X_2}(x_1,x_2)&=J^{-1}(y_1,y_2)\cdot f_{Y_1Y_2}(\frac{a_{12}x_2-a_{22}x_1}{a_{12}a_{21}-a_{22}a_{11}},\frac{a_{11}x_2-a_{21}x_1}{a_{22}a_{11}-a_{21}a_{12}})\\ 把題目的中參數代&入:\\ &=\frac{1}{a_{11}a_{22}-a_{12}a_{21}}\cdot\frac{1}{2\pi}exp{\left [-\left( \frac{(y_1)^2}{1}-\frac{2\frac{1}{\sqrt2} y_1 y_2}{1\sqrt2}+ \frac{(y_2)^2}{2}\right)\right]}\\ &=\frac{1}{a_{11}a_{22}-a_{12}a_{21}}\cdot\frac{1}{2\pi}exp{\left [-\left( (\frac{a_{12}x_2-a_{22}x_1}{a_{12}a_{21}-a_{22}a_{11}})^2- (\frac{a_{12}x_2-a_{22}x_1}{a_{12}a_{21}-a_{22}a_{11}})(\frac{a_{11}x_2-a_{21}x_1}{a_{22}a_{11}-a_{21}a_{12}})+ \frac{(\frac{a_{11}x_2-a_{21}x_1}{a_{22}a_{11}-a_{21}a_{12}})^2}{2}\right)\right]}\\ \end{aligned}
步驟2.求fX1(x1)fX2(x2)f_{X_1}(x_1)和f_{X_2}(x_2)
fX1=12πa112σY12+a122σY22+2a11a12ρσY1σY2exp[x1(a11μY1+a12μY2)2(a112σY12+a122σY22+2a11a12ρσY1σY2)]=12πa112+2a122+2a11a12exp[x12(a112+a1222+2a11a12)]fX2=12πa212σY12+a222σY22+2a21a22ρσY1σY2exp[x2(a21μY1+a22μY2)2(a212σY12+a222σY22+2a21a22ρσY1σY2)]=12πa212+2a222+2a21a22exp[x22(a212+a2222+2a21a22)]fX1fX2=12πa112+2a122+2a11a12a212+2a222+2a21a22exp[x12(a112+a1222+2a11a12)x22(a212+a2222+2a21a22)] \begin{aligned} f_{X_1}&=\frac1{\sqrt{2\pi}\sqrt{a_{11}^2\sigma_{Y_1}^2+a_{12}^2\sigma_{Y_2}^2+2a_{11}a_{12}\rho\sigma_{Y_1}\sigma_{Y_2}}}exp\left[ -\frac{x_1-(a_{11}\mu_{Y_1}+a_{12}\mu_{Y_2})}{2(a_{11}^2\sigma_{Y_1}^2+a_{12}^2\sigma_{Y_2}^2+2a_{11}a_{12}\rho\sigma_{Y_1}\sigma_{Y_2})}\right]\\ &=\frac1{\sqrt{2\pi}\sqrt{a_{11}^2+2a_{12}^2+2a_{11}a_{12}}}exp\left[ -\frac{x_1}{2(a_{11}^2+a_{12}^2\cdot2+2a_{11}a_{12})}\right]\\ f_{X_2}&=\frac1{\sqrt{2\pi}\sqrt{a_{21}^2\sigma_{Y_1}^2+a_{22}^2\sigma_{Y_2}^2+2a_{21}a_{22}\rho\sigma_{Y_1}\sigma_{Y_2}}}exp\left[ -\frac{x_2-(a_{21}\mu_{Y_1}+a_{22}\mu_{Y_2})}{2(a_{21}^2\sigma_{Y_1}^2+a_{22}^2\sigma_{Y_2}^2+2a_{21}a_{22}\rho\sigma_{Y_1}\sigma_{Y_2})}\right]\\ &=\frac1{\sqrt{2\pi}\sqrt{a_{21}^2+2a_{22}^2+2a_{21}a_{22}}}exp\left[ -\frac{x_2}{2(a_{21}^2+a_{22}^2\cdot2+2a_{21}a_{22})}\right]\\ f_{X1}f_{X_2}&=\frac1{2\pi\sqrt{a_{11}^2+2a_{12}^2+2a_{11}a_{12}}\sqrt{a_{21}^2+2a_{22}^2+2a_{21}a_{22}}}exp\left[ -\frac{x_1}{2(a_{11}^2+a_{12}^2\cdot2+2a_{11}a_{12})}-\frac{x_2}{2(a_{21}^2+a_{22}^2\cdot2+2a_{21}a_{22})}\right] \end{aligned}
根據題意要求,即標準的獨立的二元正太分佈,則標準差爲1,ρ=0\rho=0,整理後得到如下等式:
a11a22a12a21=1a112+2a122+2a11a12=1a212+2a222+2a21a22=12a12a22+a12a21+a11a22+a11a21=0 \begin{aligned} a_{11}a_{22}-a_{12}a_{21}=1\\ a_{11}^2+2a_{12}^2+2a_{11}a_{12}=1\\a_{21}^2+2a_{22}^2+2a_{21}a_{22}=1\\ 2a_{12}a_{22}+a_{12}a_{21}+a_{11}a_{22}+a_{11}a_{21}=0 \end{aligned}
a11=1,a12=0,a21=1,a22=1a_{11}=1 ,a_{12}=0 ,a_{21}=-1,a_{22}=1
當然這並不是的解。解可有很多,滿足上邊4個等式即可

題目58

如果X1X_1X2X_2的聯合分佈是二元正態的,則Y1=a1X1+b1,Y2=a2X2+b2Y_1=a_1X_1+b_1,Y_2=a_2X_2+b_2的聯合分佈也是二元正態的

解題思路

根據線性變換的雅可比行列式進行轉換
J(x1,x2)=y1x1y1x2y2x1y2x2=a100a2=a1a2 J(x_1,x_2)=\begin{Vmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{Vmatrix} =\begin{Vmatrix} a_{1} & 0\\ 0 & a_{2} \end{Vmatrix}=a_1a_2
x1=y1b1a1,x2=y2b2a2 x_1=\frac{y_1-b_1}{a_1},x_2=\frac{y_2-b_2}{a_2}
fX1X2(x1,x2)=12πσX1σX21ρ2exp[12(1ρ2)((x1μX1)2σX122ρ(x1μX1)(x2μX2)σX1σX2+(x2μX2)2σX22)] f_{X_1X_2}(x_1,x_2)=\frac{1}{2\pi\sigma_{X_1}\sigma_{X_2}\sqrt{1-\rho^2}}exp{\left [ -\frac{1}{2(1-\rho^2)}\left( \frac{(x_1-\mu_{X_1})^2}{\sigma_{X_1}^2}-\frac{2\rho(x_1-\mu_{X_1})(x_2-\mu_{X_2})}{\sigma_{X_1}\sigma_{X_2}}+ \frac{(x_2-\mu_{X_2})^2}{\sigma_{X_2}^2}\right)\right]}
fY1Y2(y1,y2)=fX1X2(y1b1a1,y2b2a2)J1=1a1a212πσX1σX21ρ2exp[12(1ρ2)((y1b1a1μX1)2σX122ρ(y1b1a1μX1)(y2b2a2μX2)σX1σX2+(y2b2a2μX2)2σX22)]=12πa1σX1a2σX21ρ2exp[12(1ρ2)((y1(b1+a1μX1))2(a1σX1)22ρ(y1(b1+a1μX1))(y2(b2+a2μX2))a1σX1a2σX2+(y2+(b2+a2μX2))2(a2σX2)2)] \begin{aligned} f_{Y_1Y_2}(y_1,y_2)&=f_{X_1X_2}(\frac{y_1-b_1}{a_1},\frac{y_2-b_2}{a_2})\cdot|J|^{-1}\\ &=\frac{1}{a_1a_2}\frac{1}{2\pi\sigma_{X_1}\sigma_{X_2}\sqrt{1-\rho^2}}\exp{\left [ -\frac{1}{2(1-\rho^2)}\left( \frac{(\frac{y_1-b_1}{a_1}-\mu_{X_1})^2}{\sigma_{X_1}^2}-\frac{2\rho(\frac{y_1-b_1}{a_1}-\mu_{X_1})(\frac{y_2-b_2}{a_2}-\mu_{X_2})}{\sigma_{X_1}\sigma_{X_2}}+ \frac{(\frac{y_2-b_2}{a_2}-\mu_{X_2})^2}{\sigma_{X_2}^2}\right)\right]}\\ &=\frac{1}{2\pi a_1\sigma_{X_1}a_2\sigma_{X_2}\sqrt{1-\rho^2}}\exp\left[ -\frac{1}{2(1-\rho^2)}\left(\frac{(y_1-(b_1+a_1\mu_{X_1}))^2}{(a_1\sigma_{X_1})^2}-\frac{2\rho(y_1-(b_1+a_1\mu_{X_1}))(y_2-(b_2+a_2\mu_{X_2}))}{a_1\sigma_{X_1}a_2\sigma_{X_2}}+\frac{(y_2+(b_2+a_2\mu_{X_2}))^2}{(a_2\sigma_{X_2})^2}\right)\right] \end{aligned}
令,μY1=b1+a1μX1,μY2=b2+a2μX2,σY1=a1σX1,σY2=a2σX2\mu_{Y_1}=b_1+a_1\mu_{X_1},\mu_{Y_2}=b_2+a_2\mu_{X_2},\sigma_{Y_1}=a_1\sigma_{X_1},\sigma_{Y_2}=a_2\sigma_{X_2}則:
(Y1,Y2)N(μY1,μY2,σX22,σX22,ρ) (Y_1,Y_2)\sim N(\mu_{Y_1},\mu_{Y_2},\sigma_{X_2}^2,\sigma_{X_2}^2,\rho)

題目59

如果X1X_1X2X_2是獨立的標準正態隨機變量,證明:Y1Y_1Y2Y_2的聯合分佈是二元正態的
Y1=a11X1+a12X2+b1Y2=a21X1+a22X2+b2 \begin{aligned} Y_1=a_{11}X_1+a_{12}X_2+b_1\\ Y_2=a_{21}X_1+a_{22}X_2+b_2 \end{aligned}

解題思路

令:
Z1=a11X1+a12X2Z2=a21X1+a22X2 \begin{aligned} Z_1=a_{11}X_1+a_{12}X_2\\ Z_2=a_{21}X_1+a_{22}X_2\\ \end{aligned}
則有:
Y1=Z1+b1Y2=Z2+b2 \begin{aligned} Y_1=Z_1+b_1\\ Y_2=Z_2+b_2 \end{aligned}
如果X_1和X_2是標準正態隨機變量則他們的聯合分佈是二元正態的即:
(X1,X2)N(0,0,1,1,0)(X_1,X_2)\sim N(0,0,1,1,0)
二元正態隨機變量的線性組合依然是二元正態的即:
(Z1,Z2)(Z_1,Z_2)是二元正態的
再根據58題的結果即可以證明(Y1,Y2)(Y_1,Y_2)也是二元正態的(線性變換)

題目60

利用上一題的結果,描述構造由獨立僞隨機均勻變量生成具有二元正態分佈的僞隨機變量的方法

解題思路

step1.採用Box Muller方法由兩個均勻分佈(u,v)(u,v),得到兩個獨立的正態分佈:
z1=2logucos2πvz2=2logusin2π z_1=\sqrt{-2logu}cos2\pi v\\ z_2=\sqrt{-2logu}sin2\pi
step2.利用59題的結果將得到的兩個正態分佈樣本進行變量生成的(y1,y2)(y_1,y_2)即滿足二元正態分佈。

題目61

XXYY是具有聯合分佈的連續隨機變量,求U=a+bXU=a+bXV=c+dYV=c+dY的聯合分佈密度的表達式

解:

令(X,Y)的聯合密度爲fXY(x,y)f_{XY}(x,y)
利用雅可比行列式fUV(u,v)=1J(x,y)fXY(U1,V1)f_{UV}(u,v)=\frac{1}{J(x,y)}f_{XY}(U^{-1},V^{-1})

J(x,y)=uxuyvxvy=b00d=bd J(x,y)=\begin{Vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{Vmatrix} =\begin{Vmatrix} b & 0\\ 0 & d \end{Vmatrix}=bd
所以答案:
fUV(u,v)=1bdfXY(uab,vcd)f_{UV}(u,v)=\frac{1}{bd}f_{XY}(\frac{u-a}{b},\frac{v-c}{d})

題目62

XXYY是獨立標準正態隨機變量,求P(X2+Y21)P(X^2+Y^2\leq 1)

解:

轉化爲極座標:
fRΘ(r,θ)=rfXY(rcosθ,rsinθ)=12πrer22 \begin{aligned} f_{R\Theta}(r,\theta)&=rf_{XY}(r\cos\theta,r\sin\theta)\\ &=\frac{1}{2\pi}re^{-\frac{r^2}{2}} \end{aligned}

根據條件X2+Y21X^2+Y^2\leq 1,即極座標下r1r\leq1

P(X2+Y21)=P(r1)=02π0112πrer22drdθ=02πdθ0112πrer22dr=2π12π01rer22dr=01er22dr22u=r22=012eudu=1e12 \begin{aligned} P(X^2+Y^2\leq 1)&=P(r\leq1)\\ &=\int_0^{2\pi}\int_0^1\frac{1}{2\pi}re^{-\frac{r^2}{2}}drd\theta\\ &=\int_0^{2\pi}d\theta\int_0^1\frac{1}{2\pi}re^{-\frac{r^2}{2}}dr\\ &=2\pi\cdot \frac1{2\pi}\int_0^1re^{-\frac{r^2}{2}}dr\\ &=\int_0^1e^{-\frac{r^2}{2}}d\frac{r^2}{2}\\ 令u=\frac{r^2}{2}\\ &=\int_0^\frac12e^{-u}du\\ &=1-e^{-\frac12} \end{aligned}

題目63

XXYY是具有聯合分佈的連續隨機變量
a.討論X+YX+YXYX-Y的聯合密度表達式
b.討論XYXYX/YX/Y的聯合密度表達式
c.在XXYY獨立的情況下,特殊表示a和b中的表達式

解:

a.令
U=X+Y,V=XYX=U+V2,Y=UV2J(x,y)=uxuyvxvy=1111=2fUV=12fXY(u+v2,uv2) \begin{aligned} U=X+Y,V=X-Y\\ X=\frac{U+V}{2}, Y=\frac{U-V}{2}\\ J(x,y)=\begin{Vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{Vmatrix} =\begin{Vmatrix} 1 & 1\\ 1 & -1 \end{Vmatrix}=2\\ f_{UV}=\frac12f_{XY}(\frac{u+v}{2},\frac{u-v}2) \end{aligned}
b.令
U=XY,V=X/YX=(UV)12Y=(UV)12J(x,y)=uxuyvxvy=yx1x21x=2xyfUV=2xyfXY((xy)12,(xy)12) \begin{aligned} U=XY,V=X/Y\\ X=(UV)^{\frac12} Y=(\frac{U}V)^{\frac12} J(x,y)=\begin{Vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{Vmatrix} =\begin{Vmatrix} y & x\\ -\frac1{x^2} &\frac1x \end{Vmatrix}=2\frac{x}y\\ f_{UV}=2|\frac xy|f_{XY}((xy)^\frac12,(\frac xy)^\frac12) \end{aligned}

題目64

計算X+YX+YX/YX/Y的聯合密度,其中XXYY是參數爲λ\lambda的獨立指數隨機變量,證明X+YX+YX/YX/Y獨立的

解:

U=X+Y,V=X/YX=UVV+1,Y=UV+1U=X+Y,V=X/Y \Rightarrow X=\frac{UV}{V+1},Y=\frac{U}{V+1}

證明是獨立需要證明:fU(u)fV(v)=fUV(u,v)f_U(u)\cdot f_V(v)=f_{UV}(u,v)

有:
J(x,y)=uxuyvxvy=111yxy2=xyy2J(x,y)1=y2x+y=u(v+1)2 \begin{aligned} J(x,y)&=\begin{Vmatrix}\\ \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{Vmatrix} =\begin{Vmatrix} 1 & 1\\ \frac1y & -\frac x{y^2} \end{Vmatrix}=-\frac{x-y}{y^2}\\ |J(x,y)|^{-1} &=\frac{y^2}{x+y}=\frac{u}{(v+1)^2} \end{aligned}
fUV(u,v)=J(x,y)1fXY(uvv+1,uv+1)=u(v+1)2λeλuvv+1λeλuv+1=u(v+1)2λ2eλu \begin{aligned} f_{UV}(u,v)&=|J(x,y)|^{-1}f_{XY}(\frac{uv}{v+1},\frac{u}{v+1})\\ &=\frac{u}{(v+1)^2} \cdot \lambda e^{-\lambda \frac{uv}{v+1} } \cdot \lambda e^{-\lambda \frac{u}{v+1}}\\ &=\frac{u}{(v+1)^2}\lambda^2e^{-\lambda u} \end{aligned}
接下來,分別求 fU(u)fV(v)f_U(u)和f_V(v)
fU(u)=fX(x)fY(ux)dx=λ2ueλufV(v)=xfX(x)fY(xv)dx=λ2xeλx(1+v)dxa=λ(1+v),0=λ20xeaxdx=λ21a2(ax1)eax0=11+v2 \begin{aligned} f_U(u)&=\int_{-\infty}^{\infty}f_X(x)f_Y(u-x)dx=\lambda^2ue^{-\lambda u}\\ f_V(v)&=\int_{-\infty}^{\infty}|x|f_X(x)f_Y(xv)dx\\ &=\lambda^2\int_{-\infty}^{\infty}xe^{-\lambda x(1+v)}dx\\ 令a=-\lambda(1+v),則積分下限爲0,上限爲\infty\\ &=\lambda^2\int_0^{\infty}xe^{ax}dx\\ &=\lambda^2\frac1{a^2}(ax-1)e^{ax} \bigg |_0^{\infty}\\ &=\frac1{1+v^2} \end{aligned}
所以fU(u)fV(v)=fUV(u,v)f_U(u)\cdot f_V(v)=f_{UV}(u,v)是成立的,U和V是獨立的。

題目65

假定系統元件串聯在一起,且元件的壽命爲參數爲λi\lambda_i獨立指數隨機變量,證明系統壽命服從參數是λi\sum\lambda_i的指數分佈。

解:

參考書中例題
VV代表系統整體壽命,根據書中公式有
fV(v)=nf(v)[1F(v)]n1F(v)=1eλv=nλeλv(eλv)n1=nλenλv \begin{aligned} f_V(v)&=nf(v)[1-F(v)]^{n-1}\\ 其中F(v)=1-e^{-\lambda v}\\ &=n\lambda e^{-\lambda v}(e^{-\lambda v})^{n-1}\\ &=n\lambda e^{-n\lambda v} \end{aligned}

題目66

下圖系統中的每一個元件壽命都獨立的服從參數爲λ\lambda的指數分佈,計算系統壽命的cdf和密度
圖不畫了,解釋一下,6個元件分成3組,組內兩個元件串連,3組並聯

解:

令串聯部分的壽命分佈爲FV(t)F_V(t)
FV(t)=1[1eλt]2=1e2λtF_V(t)=1-[1-e^{-\lambda t}]^2=1-e^{-2\lambda t}
令整體系統壽命分佈爲FU(t)F_U(t)
FU(t)=[FV(v)]3=(1e2λt)3F_U(t)=[F_V(v)]^3=(1-e^{-2\lambda t})^3
求上式求導
f(t)=6λe2λt(1e2λt)2f(t)=6\lambda e^{-2\lambda t}(1-e^{-2\lambda t})^2

題目67

卡片含有n個芯片和一個糾錯元件,這樣如果只有一個芯片失效,卡片仍能正常工作;如果有兩個或兩個以上的芯片失效,卡片將不能正常工作。如果每個芯片的壽命服從參數爲 λ\lambda的指數分佈,計算卡片壽命的密度函數。

解:


FA(t)F_A(t)系統的壽命分佈
F0(t)F_0(t)所有芯片都沒有失效的概率分佈
F1(t)F_1(t)只有一個芯片失效的概率分佈
F(t)F(t)單一的一個芯片失效的概率分佈
則有:
FA(t)=1F0(t)F(t)=1(1F(t))nnF(t)(1F(t))n1=1(1(1eλt))nn(1eλt)(1(1eλt))n1=1enλtn(1eλt)e(n1)λt=1enλtne(n1)λt+nenλt \begin{aligned} F_A(t)&=1-F_0(t)-F(t)\\ &=1-(1-F(t))^n-nF(t)(1-F(t))^{n-1}\\ &=1-(1-(1-e^{-\lambda t}))^n-n(1-e^{-\lambda t})(1-(1-e^{-\lambda t}))^{n-1}\\ &=1-e^{-n\lambda t} -n(1-e^{-\lambda t})e^{-(n-1)\lambda t}\\ &=1-e^{-n\lambda t}-ne^{-(n-1)\lambda t}+ne^{-n\lambda t} \end{aligned}
對上式求導則爲密度函數
fA(t)=FA(t)=enλtnλne(n1)λt(n1)λ+nenλtnλ=nλenλt+n(n1)λe(n1)λtnnλenλt=n(n1)λe(n1)λt+n(1n)λenλt=n(n1)λ(e(n1)λtenλt) \begin{aligned} f_A(t)&=F_A^{'}(t)\\ &=-e^{-n\lambda t}\cdot -n\lambda -ne^{-(n-1)\lambda t} \cdot -(n-1)\lambda +ne^{-n\lambda t}\cdot -n\lambda\\ &=n\lambda e^{-n\lambda t}+n(n-1)\lambda e^{-(n-1)\lambda t}-n\cdot n\lambda e^{-n\lambda t}\\ &=n(n-1)\lambda e^{-(n-1)\lambda t}+n(1-n)\lambda e^{-n\lambda t}\\ &=n(n-1)\lambda ( e^{-(n-1)\lambda t}- e^{-n\lambda t}) \end{aligned}

題目68

U1U_1U2U_2U3U_3是獨立的均勻隨機變量
a.計算U(1)U_{(1)}U(2)U_{(2)}U(3)U_{(3)}的聯合密度
b.在一英里的高速公路上,獨立且隨機地建造三個加油站,任意兩個加油站之間的距離不小於13\frac13英里的概率是多少

解:

a.模擬對最水值和最小值聯合密度的計算方法
U=U(1),V=U(2),W=U(3)U=U_{(1)},V=U_{(2)},W=U_{(3)}
f(u,v,w)=n!1!1!1!f(u)f(v)f(w)n=3,f(u)=f(v)=f(w)=1f(u,v,w)=6,uvw \begin{aligned} f(u,v,w)&=\frac{n!}{1!1!1!}f(u)f(v)f(w)\\ 代入n=3,f(u)=f(v)=f(w)=1\\ f(u,v,w)&=6,u\leq v\leq w \end{aligned}
b.在一英里的高速公路上,獨立且隨機地建造三個加油站,任意兩個加油站之間的距離不小於13\frac13英里的概率是多少
我們可以認爲3個加油站的位置服從U(0,1)U(0,1),令X爲第1個加油站的位置,Y爲第二個加油站的位置Z爲第三個加油站的位置,則X,Y,Z是3個均勻分佈的順序統計量,則fXYZ(x,y,z)=6(a)f_{XYZ}(x,y,z)=6(根據a問題的結果)
任意兩個加油站之間的距離大於13\frac13則必須有YX>13ZY>13Y-X>\frac13 並且 Z-Y>\frac13
P(YX>13ZY>13)=013x+1323y+131f(x,y,z)dzdydx=013x+132346ydy=013132x3x2dx=127 \begin{aligned} P(Y-X>\frac13且 Z-Y>\frac13)&=\int_0^\frac13\int_{x+\frac13}^{\frac23}\int_{y+\frac13}^1f(x,y,z)dzdydx\\ &=\int_0^\frac13\int_{x+\frac13}^{\frac23}4-6ydy\\ &=\int_0^\frac13\frac13-2x-3x^2dx\\ &=\frac1{27} \end{aligned}
積分上下限是結合0<x<y<z<10<x<y<z<1yx>13zt>13y-x>\frac13且z-t>\frac13得出

題目69

計算nn個獨立威布爾隨機變量最小值的密度,每個變量具有密度:
f(t)=βαβtβ1e(t/α)β,t0f(t)=\beta\alpha^{-\beta}t^{-\beta-1}e^{-(t/\alpha)^{\beta}},t \geq 0

解:

VV代表nn個獨立威布爾變量的最小值隨機變量
根據3.7節中的公式
fV(v)=nf(v)[1F(v)]n1f_V(v)=nf(v)[1-F(v)]^{n-1}
其中:
f(v)=βαβvβ1e(v/α)βf_(v)=\beta\alpha^{-\beta}v^{-\beta-1}e^{-(v/\alpha)^{\beta}}
F(v)=1e(v/α)βF_(v)=1-e^{-(v/\alpha)^{\beta}}
代入上式經計算結果如下:
fV(v)=nβαβvβ1en(v/α)βf_V(v)=n\beta\alpha^{-\beta}v^{\beta-1}e^{-n(v/\alpha)^{\beta}}

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章