Self-Taught Learning

      自編碼器是一個三層的feed-forward神經網絡模型,輸入層經過隱含層的特徵表示後再重構出跟輸入層逼近的輸出層,中間的隱含層是特徵表示層,表示對輸入層學習到的特徵,這些特徵可能更好地表示了數據,如果用學到的特徵來訓練數據分類或迴歸可能學習效果更好,於是就有了自我學習無監督特徵學習


    如果我們有很多的未標註數據,那就更好了,我們可以用自編碼器學習特徵表示,然後用學到的特徵表示對已標註數據提取特徵,再用機器學習算法比如softmax regression進行訓練、預測,即先經過無監督的特徵學習,然後再經過有監督的學習。未標註數據與已標註數據來自同一分佈時就是半監督學習,來自不同分佈就是無監督學習,比如我們的目標是要區分摩托車和汽車,如果未標註數據也是摩托車或汽車,那麼這個問題就是半監督學習,如果不是則是自我學習。


    自編碼的網絡結構如下:


    通過自編碼器得到特徵表示的模型參數W1和b1,我們就可以用W1和b1對已標註數據進行特徵提取,即算出它們的激活值。


   實驗數據也是MNIST數據集,這次把5-9類的數據作爲無標註數據學習特徵表示,然後在0-4類的數據中分爲訓練集和測試集來運行模型,實驗結果的預測準確率爲98.32%,而直接用圖像像素作爲輸入得到準確率爲96.74%。

%% CS294A/CS294W Self-taught Learning Exercise

%  Instructions
%  ------------
% 
%  This file contains code that helps you get started on the
%  self-taught learning. You will need to complete code in feedForwardAutoencoder.m
%  You will also need to have implemented sparseAutoencoderCost.m and 
%  softmaxCost.m from previous exercises.
%
%% ======================================================================
%  STEP 0: Here we provide the relevant parameters values that will
%  allow your sparse autoencoder to get good filters; you do not need to 
%  change the parameters below.

inputSize  = 28 * 28;
numLabels  = 5;
hiddenSize = 200;
sparsityParam = 0.1; % desired average activation of the hidden units.
                     % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
		             %  in the lecture notes). 
lambda = 3e-3;       % weight decay parameter       
beta = 3;            % weight of sparsity penalty term   
maxIter = 400;

%% ======================================================================
%  STEP 1: Load data from the MNIST database
%
%  This loads our training and test data from the MNIST database files.
%  We have sorted the data for you in this so that you will not have to
%  change it.

% Load MNIST database files
mnistData   = loadMNISTImages('mnist/train-images-idx3-ubyte');
mnistLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte');

% Set Unlabeled Set (All Images)

% Simulate a Labeled and Unlabeled set
labeledSet   = find(mnistLabels >= 0 & mnistLabels <= 4);
unlabeledSet = find(mnistLabels >= 5);  %5-9類作爲無標籤數據集用來學習特徵表示
%已標註數據分一半分別用於訓練softmax和測試
numTrain = round(numel(labeledSet)/2);
trainSet = labeledSet(1:numTrain); 
testSet  = labeledSet(numTrain+1:end);

unlabeledData = mnistData(:, unlabeledSet);

trainData   = mnistData(:, trainSet);
trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5

testData   = mnistData(:, testSet);
testLabels = mnistLabels(testSet)' + 1;   % Shift Labels to the Range 1-5

% Output Some Statistics
fprintf('# examples in unlabeled set: %d\n', size(unlabeledData, 2));
fprintf('# examples in supervised training set: %d\n\n', size(trainData, 2));
fprintf('# examples in supervised testing set: %d\n\n', size(testData, 2));

%% ======================================================================
%  STEP 2: Train the sparse autoencoder
%  This trains the sparse autoencoder on the unlabeled training
%  images. 

%  Randomly initialize the parameters
theta = initializeParameters(hiddenSize, inputSize);

%% ----------------- YOUR CODE HERE ----------------------
%  Find opttheta by running the sparse autoencoder on
%  unlabeledTrainingImages

opttheta = theta; 

%用minFunc裏的L-BFGS算法訓練sparse autoencoder的模型,要用到sparse autoencoder的計算損失的代碼
addpath minFunc/
options.Method = 'lbfgs';
options.maxIter = 400;
options.display = 'on';

[opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
                                    inputSize, hiddenSize, ...
                                    lambda, sparsityParam, ...
                                    beta, unlabeledData), ...
                                  theta, options);


%% -----------------------------------------------------
                          
% Visualize weights
W1 = reshape(opttheta(1:hiddenSize * inputSize), hiddenSize, inputSize);
display_network(W1');

%%======================================================================
%% STEP 3: Extract Features from the Supervised Dataset
%  
%  You need to complete the code in feedForwardAutoencoder.m so that the 
%  following command will extract features from the data.

trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
                                       trainData);

testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
                                       testData);

%%======================================================================
%% STEP 4: Train the softmax classifier

softmaxModel = struct;  
%% ----------------- YOUR CODE HERE ----------------------
%  Use softmaxTrain.m from the previous exercise to train a multi-class
%  classifier. 

%  Use lambda = 1e-4 for the weight regularization for softmax

% You need to compute softmaxModel using softmaxTrain on trainFeatures and
% trainLabels
%softmax訓練過程
options.maxIter = 100;
lambda = 1e-4;
inputSize = hiddenSize;
softmaxModel = softmaxTrain(inputSize, 5, lambda, ...
                            trainFeatures, trainLabels, options);


%% -----------------------------------------------------


%%======================================================================
%% STEP 5: Testing 

%% ----------------- YOUR CODE HERE ----------------------
% Compute Predictions on the test set (testFeatures) using softmaxPredict
% and softmaxModel
%用到softmax練習中的預測函數
[pred] = softmaxPredict(softmaxModel, testFeatures);

acc = mean(pred(:) == testLabels(:));
fprintf('Accuracy: %0.3f%%\n', acc*100);



%% -----------------------------------------------------

% Classification Score
fprintf('Test Accuracy: %f%%\n', 100*mean(pred(:) == testLabels(:)));

% (note that we shift the labels by 1, so that digit 0 now corresponds to
%  label 1)
%
% Accuracy is the proportion of correctly classified images
% The results for our implementation was:
%
% Accuracy: 98.3%
%
% 


參考:

http://ufldl.stanford.edu/wiki/index.php/Self-Taught_Learning_to_Deep_Networks

  


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章