證明 總偏差平方和 = 迴歸平方和 + 殘差平方和

線性迴歸中有這樣一條性質:
(SST)=SSR+SSE總偏差平方和 (SST) = 迴歸平方和(SSR) + 殘差平方和(SSE)

即:
(1)(yiy)2=(y^iy)2+(yiy)2\sum(y_i-\overline y)^2=\sum(\hat y_i-\overline y)^2+\sum(y_i-\overline y)^2\tag{1}

證明:下面以一元迴歸爲例證明。
(yiy)2=(yiy^i+y^iy)2=(yiy^i)2+(y^iy)2+2(yiy^i)(y^iy) \begin{aligned} \sum(y_i-\overline y)^2&=\sum(y_i-\hat y_i+\hat y_i-\overline y)^2\\ &=\sum(y_i-\hat y_i)^2+\sum(\hat y_i-\overline y)^2+2\sum(y_i-\hat y_i)(\hat y_i-\overline y)\\ \end{aligned}

因此,我們需要證明 (yiy^i)(y^iy)=0\sum(y_i-\hat y_i)(\hat y_i-\overline y)=0.

(2)(yiy^i)(y^iy)=(yiy^i)y^iy(yiy^i) \begin{aligned} \sum(y_i-\hat y_i)(\hat y_i-\overline y)&=\sum(y_i-\hat y_i)\hat y_i-\overline y\sum (y_i-\hat y_i)\\ \end{aligned}\tag{2}

根據最小二乘法,若迴歸方程爲:y=β0+β1xy=\beta_0+\beta_1x,優化目標是使得 f=(yiβ0+β1xi)2f=\sum (y_i-\beta_0+\beta_1x_i)^2最小,通過令一階導數 ff 爲零計算 β0,β1\beta_0, \beta_1
fβ0=2(yiβ0+β1xi)=0 \begin{aligned} \frac{\partial f}{\partial \beta_0}=-2\sum(y_i-\beta_0+\beta_1x_i)=0 \end{aligned}
由於 y^i=β0+β1xi\hat y_i=\beta_0+\beta_1x_i,所以
(3)(yiy^i)=0\sum (y_i-\hat y_i)=0\tag{3}

又因爲:
fβ1=2xi(yiβ0+β1xi)=0 \begin{aligned} \frac{\partial f}{\partial \beta_1}=2\sum x_i(y_i-\beta_0+\beta_1x_i)=0 \end{aligned}

所以,
(4)(β0+β1xi)(yiβ0+β1xi)=y^i(y^iyi)=0 \sum (\beta_0+\beta_1x_i)(y_i-\beta_0+\beta_1x_i)=\sum\hat y_i(\hat y_i-y_i)=0\tag{4}

綜合表達式 (2),(3),(4),表達式(1)成立。因此:
(SST)=SSR+SSE總偏差平方和 (SST) = 迴歸平方和(SSR) + 殘差平方和(SSE)
\Box

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章