Linux 內核中工作隊列的操作

工作隊列(workqueue)的Linux內核中的定義的用來處理不是很緊急事件的回調方式處理方法.

  以下代碼的linux內核版本爲2.6.19.2, 源代碼文件主要爲kernel/workqueue.c.

  2. 數據結構

  /* include/linux/workqueue.h */
  // 工作節點結構
  struct work_struct {
  // 等待時間
  unsigned long pending;
  // 鏈表節點
  struct list_head entry;
  // workqueue回調函數
  void (*func)(void *);
  // 回調函數func的數據
  void *data;
  // 指向CPU相關數據, 一般指向struct cpu_workqueue_struct結構
  void *wq_data;
  // 定時器
  struct timer_list timer;
  };
  struct execute_work {
  struct work_struct work;
  };
  /* kernel/workqueue.c */
  /*
  * The per-CPU workqueue (if single thread, we always use the first
  * possible cpu).
  *
  * The sequence counters are for flush_scheduled_work(). It wants to wait
  * until all currently-scheduled works are completed, but it doesn't
  * want to be livelocked by new, incoming ones. So it waits until
  * remove_sequence is >= the insert_sequence which pertained when
  * flush_scheduled_work() was called.
  */
  // 這個結構是針對每個CPU的
  struct cpu_workqueue_struct {
  // 結構鎖
  spinlock_t lock;
  // 下一個要執行的節點序號
  long remove_sequence; /* Least-recently added (next to run) */
  // 下一個要插入節點的序號
  long insert_sequence; /* Next to add */
  // 工作機構鏈表節點
  struct list_head worklist;
  // 要進行處理的等待隊列
  wait_queue_head_t more_work;
  // 處理完的等待隊列
  wait_queue_head_t work_done;
  // 工作隊列節點
  struct workqueue_struct *wq;
  // 進程指針
  struct task_struct *thread;
  int run_depth; /* Detect run_workqueue() recursion depth */
  } ____cacheline_aligned;
  /*
  * The externally visible workqueue abstraction is an array of
  * per-CPU workqueues:
  */
  // 工作隊列結構
  struct workqueue_struct {
  struct cpu_workqueue_struct *cpu_wq;
  const char *name;
  struct list_head list; /* Empty if single thread */
  };

   

kernel/workqueue.c中定義了一個工作隊列鏈表, 所有工作隊列可以掛接到這個鏈表中:

  static LIST_HEAD(workqueues);

  3. 一些宏定義

  /* include/linux/workqueue.h */
  // 初始化工作隊列
  #define __WORK_INITIALIZER(n, f, d) {
  // 初始化list
  .entry = { &(n).entry, &(n).entry },
  // 回調函數
  .func = (f),
  // 回調函數參數
  .data = (d),
  // 初始化定時器
  .timer = TIMER_INITIALIZER(NULL, 0, 0),
  }
  // 聲明工作隊列並初始化
  #define DECLARE_WORK(n, f, d)
  struct work_struct n = __WORK_INITIALIZER(n, f, d)
  /*
  * initialize a work-struct's func and data pointers:
  */
  // 重新定義工作結構參數
  #define PREPARE_WORK(_work, _func, _data)
  do {
  (_work)->func = _func;
  (_work)->data = _data;
  } while (0)
  /*
  * initialize all of a work-struct:
  */
  // 初始化工作結構, 和__WORK_INITIALIZER功能相同,不過__WORK_INITIALIZER用在
  // 參數初始化定義, 而該宏用在程序之中對工作結構賦值
  #define INIT_WORK(_work, _func, _data)
  do {
  INIT_LIST_HEAD(&(_work)->entry);
  (_work)->pending = 0;
  PREPARE_WORK((_work), (_func), (_data));
  init_timer(&(_work)->timer);
  } while (0)

  4. 操作函數

4.1 創建工作隊列

  一般的創建函數是create_workqueue, 但這其實只是一個宏:

  /* include/linux/workqueue.h */

  #define create_workqueue(name) __create_workqueue((name), 0)

  在workqueue的初始化函數中, 定義了一個針對內核中所有線程可用的事件工作隊列, 其他內核線程建立的事件工作結構就都掛接到該隊列:

  void init_workqueues(void)
  {
  ...
  keventd_wq = create_workqueue("events");
  ...
  }

  核心創建函數是__create_workqueue:

  struct workqueue_struct *__create_workqueue(const char *name,
  int singlethread)
  {
  int cpu, destroy = 0;
  struct workqueue_struct *wq;
  struct task_struct *p;
  // 分配工作隊列結構空間
  wq = kzalloc(sizeof(*wq), GFP_KERNEL);
  if (!wq)
  return NULL;
  // 爲每個CPU分配單獨的工作隊列空間
  wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
  if (!wq->cpu_wq) {
  kfree(wq);
  return NULL;
  }
  wq->name = name;
  mutex_lock(&workqueue_mutex);
  if (singlethread) {
  // 使用create_workqueue宏時該參數始終爲0
  // 如果是單一線程模式, 在單線程中調用各個工作隊列
  // 建立一個的工作隊列內核線程
  INIT_LIST_HEAD(&wq->list);
  // 建立工作隊列的線程
  p = create_workqueue_thread(wq, singlethread_cpu);
  if (!p)
  destroy = 1;
  else
  // 喚醒該線程
  wake_up_process(p);
  } else {
  // 鏈表模式, 將工作隊列添加到工作隊列鏈表
  list_add(&wq->list, &workqueues);
  // 爲每個CPU建立一個工作隊列線程
  for_each_online_cpu(cpu) {
  p = create_workqueue_thread(wq, cpu);
  if (p) {
  // 綁定CPU
  kthread_bind(p, cpu);
  // 喚醒線程
  wake_up_process(p);
  } else
  destroy = 1;
  }
  }
  mutex_unlock(&workqueue_mutex);
  /*
  * Was there any error during startup? If yes then clean up:
  */
  if (destroy) {
  // 建立線程失敗, 釋放工作隊列
  destroy_workqueue(wq);
  wq = NULL;
  }
  return wq;
  }
  EXPORT_SYMBOL_GPL(__create_workqueue);
  // 創建工作隊列線程
  static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
  int cpu)
  {
  // 每個CPU的工作隊列
  struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
  struct task_struct *p;
  spin_lock_init(&cwq->lock);
  // 初始化
  cwq->wq = wq;
  cwq->thread = NULL;
  cwq->insert_sequence = 0;
  cwq->remove_sequence = 0;
  INIT_LIST_HEAD(&cwq->worklist);
  // 初始化等待隊列more_work, 該隊列處理要執行的工作結構
  init_waitqueue_head(&cwq->more_work);
  // 初始化等待隊列work_done, 該隊列處理執行完的工作結構
  init_waitqueue_head(&cwq->work_done);
  // 建立內核線程work_thread
  if (is_single_threaded(wq))
  p = kthread_create(worker_thread, cwq, "%s", wq->name);
  else
  p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
  if (IS_ERR(p))
  return NULL;
  // 保存線程指針
  cwq->thread = p;
  return p;
  }
  static int worker_thread(void *__cwq)
  {
  struct cpu_workqueue_struct *cwq = __cwq;
  // 聲明一個等待隊列
  DECLARE_WAITQUEUE(wait, current);
  // 信號
  struct k_sigaction sa;
  sigset_t blocked;
  current->flags |= PF_NOFREEZE;
  // 降低進程優先級, 工作進程不是個很緊急的進程,不和其他進程搶佔CPU,通常在系統空閒時運行
  set_user_nice(current, -5);
  /* Block and flush all signals */
  // 阻塞所有信號
  sigfillset(&blocked);
  sigprocmask(SIG_BLOCK, &blocked, NULL);
  flush_signals(current);
  /*
  * We inherited MPOL_INTERLEAVE from the booting kernel.
  * Set MPOL_DEFAULT to insure node local allocations.
  */
  numa_default_policy();
  /* SIG_IGN makes children autoreap: see do_notify_parent(). */
  // 信號處理都是忽略
  sa.sa.sa_handler = SIG_IGN;
  sa.sa.sa_flags = 0;
  siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
  do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
  // 進程可中斷
  set_current_state(TASK_INTERRUPTIBLE);
  // 進入循環, 沒明確停止該進程就一直運行
  while (!kthread_should_stop()) {
  // 設置more_work等待隊列, 當有新work結構鏈入隊列中時會激發此等待隊列
  add_wait_queue(&cwq->more_work, &wait);
  if (list_empty(&cwq->worklist))
  // 工作隊列爲空, 睡眠
  schedule();
  else
  // 進行運行狀態
  __set_current_state(TASK_RUNNING);
  // 刪除等待隊列
  remove_wait_queue(&cwq->more_work, &wait);
  // 按鏈表遍歷執行工作任務
  if (!list_empty(&cwq->worklist))
  run_workqueue(cwq);
  // 執行完工作, 設置進程是可中斷的, 重新循環等待工作
  set_current_state(TASK_INTERRUPTIBLE);
  }
  __set_current_state(TASK_RUNNING);
  return 0;
  }
  // 運行工作結構
  static void run_workqueue(struct cpu_workqueue_struct *cwq)
  {
  unsigned long flags;
  /*
  * Keep taking off work from the queue until
  * done.
  */
  // 加鎖
  spin_lock_irqsave(&cwq->lock, flags);
  // 統計已經遞歸調用了多少次了
  cwq->run_depth++;
  if (cwq->run_depth > 3) {
  // 遞歸調用此時太多
  /* morton gets to eat his hat */
  printk("%s: recursion depth exceeded: %d
",
  __FUNCTION__, cwq->run_depth);
  dump_stack();
  }
  // 遍歷工作鏈表
  while (!list_empty(&cwq->worklist)) {
  // 獲取的是next節點的
  struct work_struct *work = list_entry(cwq->worklist.next,
  struct work_struct, entry);
  void (*f) (void *) = work->func;
  void *data = work->data;
  // 刪除節點, 同時節點中的list參數清空
  list_del_init(cwq->worklist.next);
  // 解鎖
  // 現在在執行以下代碼時可以中斷,run_workqueue本身可能會重新被調用, 所以要判斷遞歸深度
  spin_unlock_irqrestore(&cwq->lock, flags);
  BUG_ON(work->wq_data != cwq);
  // 工作結構已經不在鏈表中
  clear_bit(0, &work->pending);
  // 執行工作函數
  f(data);
  // 重新加鎖
  spin_lock_irqsave(&cwq->lock, flags);
  // 執行完的工作序列號遞增
  cwq->remove_sequence++;
  // 喚醒工作完成等待隊列, 供釋放工作隊列
  wake_up(&cwq->work_done);
  }
  // 減少遞歸深度
  cwq->run_depth--;
  // 解鎖
  spin_unlock_irqrestore(&cwq->lock, flags);
  }

    4.2 釋放工作隊列  /**
  * destroy_workqueue - safely terminate a workqueue
  * @wq: target workqueue
  *
  * Safely destroy a workqueue. All work currently pending will be done first.
  */
  void destroy_workqueue(struct workqueue_struct *wq)
  {
  int cpu;
  // 清除當前工作隊列中的所有工作
  flush_workqueue(wq);
  /* We don't need the distraction of CPUs appearing and vanishing. */
  mutex_lock(&workqueue_mutex);
  // 結束該工作隊列的線程
  if (is_single_threaded(wq))
  cleanup_workqueue_thread(wq, singlethread_cpu);
  else {
  for_each_online_cpu(cpu)
  cleanup_workqueue_thread(wq, cpu);
  list_del(&wq->list);
  }
  mutex_unlock(&workqueue_mutex);
  // 釋放工作隊列中對應每個CPU的工作隊列數據
  free_percpu(wq->cpu_wq);
  kfree(wq);
  }
  EXPORT_SYMBOL_GPL(destroy_workqueue);
  /**
  * flush_workqueue - ensure that any scheduled work has run to completion.
  * @wq: workqueue to flush
  *
  * Forces execution of the workqueue and blocks until its completion.
  * This is typically used in driver shutdown handlers.
  *
  * This function will sample each workqueue's current insert_sequence number and
  * will sleep until the head sequence is greater than or equal to that. This
  * means that we sleep until all works which were queued on entry have been
  * handled, but we are not livelocked by new incoming ones.
  *
  * This function used to run the workqueues itself. Now we just wait for the
  * helper threads to do it.
  */
  void fastcall flush_workqueue(struct workqueue_struct *wq)
  {
  // 該進程可以睡眠
  might_sleep();
  // 清空每個CPU上的工作隊列
  if (is_single_threaded(wq)) {
  /* Always use first cpu's area. */
  flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
  } else {
  int cpu;
  mutex_lock(&workqueue_mutex);
  for_each_online_cpu(cpu)
  flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
  mutex_unlock(&workqueue_mutex);
  }
  }
  EXPORT_SYMBOL_GPL(flush_workqueue);
  flush_workqueue的核心處理函數爲flush_cpu_workqueue:
  static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
  {
  if (cwq->thread == current) {
  // 如果是工作隊列進程正在被調度
  /*
  * Probably keventd trying to flush its own queue. So simply run
  * it by hand rather than deadlocking.
  */
  // 執行完該工作隊列
  run_workqueue(cwq);
  } else {
  // 定義等待
  DEFINE_WAIT(wait);
  long sequence_needed;
  // 加鎖
  spin_lock_irq(&cwq->lock);
  // 最新工作結構序號
  sequence_needed = cwq->insert_sequence;
  // 該條件是判斷隊列中是否還有沒有執行的工作結構
  while (sequence_needed - cwq->remove_sequence > 0) {
  // 有爲執行的工作結構
  // 通過work_done等待隊列等待
  prepare_to_wait(&cwq->work_done, &wait,
  TASK_UNINTERRUPTIBLE);
  // 解鎖
  spin_unlock_irq(&cwq->lock);
  // 睡眠, 由wake_up(&cwq->work_done)來喚醒
  schedule();
  // 重新加鎖
  spin_lock_irq(&cwq->lock);
  }
  // 等待清除
  finish_wait(&cwq->work_done, &wait);
  spin_unlock_irq(&cwq->lock);
  }
  }

   

4.3 調度工作

  在大多數情況下, 並不需要自己建立工作隊列,而是隻定義工作, 將工作結構掛接到內核預定義的事件工作隊列中調度, 在kernel/workqueue.c中定義了一個靜態全局量的工作隊列keventd_wq:

  static struct workqueue_struct *keventd_wq;

  4.3.1 立即調度

  // 在其他函數中使用以下函數來調度工作結構, 是把工作結構掛接到工作隊列中進行調度
  /**
  * schedule_work - put work task in global workqueue
  * @work: job to be done
  *
  * This puts a job in the kernel-global workqueue.
  */
  // 調度工作結構, 將工作結構添加到事件工作隊列keventd_wq
  int fastcall schedule_work(struct work_struct *work)
  {
  return queue_work(keventd_wq, work);
  }
  EXPORT_SYMBOL(schedule_work);
  /**
  * queue_work - queue work on a workqueue
  * @wq: workqueue to use
  * @work: work to queue
  *
  * Returns 0 if @work was already on a queue, non-zero otherwise.
  *
  * We queue the work to the CPU it was submitted, but there is no
  * guarantee that it will be processed by that CPU.
  */
  int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
  {
  int ret = 0, cpu = get_cpu();
  if (!test_and_set_bit(0, &work->pending)) {
  // 工作結構還沒在隊列, 設置pending標誌表示把工作結構掛接到隊列中
  if (unlikely(is_single_threaded(wq)))
  cpu = singlethread_cpu;
  BUG_ON(!list_empty(&work->entry));
  // 進行具體的排隊
  __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
  ret = 1;
  }
  put_cpu();
  return ret;
  }
  EXPORT_SYMBOL_GPL(queue_work);
  /* Preempt must be disabled. */
  // 不能被搶佔
  static void __queue_work(struct cpu_workqueue_struct *cwq,
  struct work_struct *work)
  {
  unsigned long flags;
  // 加鎖
  spin_lock_irqsave(&cwq->lock, flags);
  // 指向CPU工作隊列
  work->wq_data = cwq;
  // 掛接到工作鏈表
  list_add_tail(&work->entry, &cwq->worklist);
  // 遞增插入的序列號
  cwq->insert_sequence++;
  // 喚醒等待隊列準備處理工作結構
  wake_up(&cwq->more_work);
  spin_unlock_irqrestore(&cwq->lock, flags);
  }

   

4.3.2 延遲調度

  4.3.2.1 schedule_delayed_work

  /**
  * schedule_delayed_work - put work task in global workqueue after delay
  * @work: job to be done
  * @delay: number of jiffies to wait
  *
  * After waiting for a given time this puts a job in the kernel-global
  * workqueue.
  */
  // 延遲調度工作, 延遲一定時間後再將工作結構掛接到工作隊列
  int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
  {
  return queue_delayed_work(keventd_wq, work, delay);
  }
  EXPORT_SYMBOL(schedule_delayed_work);
  /**
  * queue_delayed_work - queue work on a workqueue after delay
  * @wq: workqueue to use
  * @work: work to queue
  * @delay: number of jiffies to wait before queueing
  *
  * Returns 0 if @work was already on a queue, non-zero otherwise.
  */
  int fastcall queue_delayed_work(struct workqueue_struct *wq,
  struct work_struct *work, unsigned long delay)
  {
  int ret = 0;
  // 定時器, 此時的定時器應該是不起效的, 延遲將通過該定時器來實現
  struct timer_list *timer = &work->timer;
  if (!test_and_set_bit(0, &work->pending)) {
  // 工作結構還沒在隊列, 設置pending標誌表示把工作結構掛接到隊列中
  // 如果現在定時器已經起效, 出錯
  BUG_ON(timer_pending(timer));
  // 工作結構已經掛接到鏈表, 出錯
  BUG_ON(!list_empty(&work->entry));
  /* This stores wq for the moment, for the timer_fn */
  // 保存工作隊列的指針
  work->wq_data = wq;
  // 定時器初始化
  timer->expires = jiffies + delay;
  timer->data = (unsigned long)work;
  // 定時函數
  timer->function = delayed_work_timer_fn;
  // 定時器生效, 定時到期後再添加到工作隊列
  add_timer(timer);
  ret = 1;
  }
  return ret;
  }
  EXPORT_SYMBOL_GPL(queue_delayed_work);
  // 定時中斷函數
  static void delayed_work_timer_fn(unsigned long __data)
  {
  struct work_struct *work = (struct work_struct *)__data;
  struct workqueue_struct *wq = work->wq_data;
  // 獲取CPU
  int cpu = smp_processor_id();
  if (unlikely(is_single_threaded(wq)))
  cpu = singlethread_cpu;
  // 將工作結構添加到工作隊列,注意這是在時間中斷調用
  __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
  }

   

4.3.2.2 schedule_delayed_work_on

  指定CPU的延遲調度工作結構, 和schedule_delayed_work相比增加了一個CPU參數, 其他都相同

  /**
  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
  * @cpu: cpu to use
  * @work: job to be done
  * @delay: number of jiffies to wait
  *
  * After waiting for a given time this puts a job in the kernel-global
  * workqueue on the specified CPU.
  */
  int schedule_delayed_work_on(int cpu,
  struct work_struct *work, unsigned long delay)
  {
  return queue_delayed_work_on(cpu, keventd_wq, work, delay);
  }
  /**
  * queue_delayed_work_on - queue work on specific CPU after delay
  * @cpu: CPU number to execute work on
  * @wq: workqueue to use
  * @work: work to queue
  * @delay: number of jiffies to wait before queueing
  *
  * Returns 0 if @work was already on a queue, non-zero otherwise.
  */
  int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  struct work_struct *work, unsigned long delay)
  {
  int ret = 0;
  struct timer_list *timer = &work->timer;
  if (!test_and_set_bit(0, &work->pending)) {
  BUG_ON(timer_pending(timer));
  BUG_ON(!list_empty(&work->entry));
  /* This stores wq for the moment, for the timer_fn */
  work->wq_data = wq;
  timer->expires = jiffies + delay;
  timer->data = (unsigned long)work;
  timer->function = delayed_work_timer_fn;
  add_timer_on(timer, cpu);
  ret = 1;
  }
  return ret;
  }
  EXPORT_SYMBOL_GPL(queue_delayed_work_on);

  5. 結論

  工作隊列和定時器函數處理有點類似, 都是執行一定的回調函數, 但和定時器處理函數不同的是定時器回調函數只執行一次, 而且執行定時器回調函數的時候是在時鐘中斷中, 限制比較多, 因此回調程序不能太複雜; 而工作隊列是通過內核線程實現, 一直有效, 可重複執行, 由於執行時降低了線程的優先級, 執行時可能休眠, 因此工作隊列處理的應該是那些不是很緊急的任務, 如垃圾回收處理等, 通常在系統空閒時執行,在xfrm庫中就廣泛使用了workqueue,使用時,只需要定義work結構,然後調用schedule_(delayed_)work即可。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章