常用概率分佈的矩母函數、特徵函數以及期望、方差的推導

一、定義與性質

XI0()tIEetx設X爲隨機變量,I是一個包含0的(有限或無限的)開區間,對任意t∈I,期望Ee^{tx}存在
MX(t)=E(etX)=+etxdF(x),tIX則稱函數M_{X}(t)=E(e^{tX})=\int_{-\infin}^{+\infin}e^{tx}dF(x),t∈I爲X的矩母函數
XφX(t)=E(eitX)=+eitxdF(x)X設X爲任意隨機變量,稱函數\varphi_{X}(t)=E(e^{itX})=\int_{-\infin}^{+\infin}e^{itx}dF(x)爲X的特徵函數
一個隨機變量的矩母函數不一定存在,但是特徵函數一定存在。
隨機變量與特徵函數存在一一對應的關係

二、離散型隨機變量的分佈

0、退化分佈(Degenerate distribution)

Xa退f(k;a)={1,k=a0,ka若X服從參數爲a的退化分佈,那麼f(k;a)=\left\{\begin{matrix} 1,k=a \\ 0,k\neq a \end{matrix}\right.
M(t)=etaM(t)=e^{ta}
φ(t)=eita\varphi(t)=e^{ita}
M(t)=aetaM'(t)=ae^{ta}
EX=M(0)=aEX=M'(0)=a
M(t)=a2etaM''(t)=a^2e^{ta}
EX2=M(0)=a2EX^2=M''(0)=a^2
DX=EX2(EX)2=0DX=EX^2-(EX)^2=0

1、離散型均勻分佈(Discrete uniform distribution)

XDU(a,b),XF(k;a,b)=ka+1ba+1若X服從離散型均勻分佈DU(a,b) ,則X分佈函數爲F(k;a,b)=\frac{\lfloor k\rfloor -a+1}{b-a+1}
M(t)=k=abetkP(x=k)則矩母函數M(t)=\sum_{k=a}^{b} e^{tk}P(x=k)
=(k=abetk)1ba+1=(\sum_{k=a}^{b} e^{tk})\frac{1}{b-a+1}
=eate(b+1)t(1et)(ba+1)=\frac{e^{at}-e^{(b+1)t}}{(1-e^{t})(b-a+1)}
φ(t)=k=abeitkP(x=k)特徵函數\varphi(t)=\sum_{k=a}^{b} e^{itk}P(x=k)
=(k=abeitk)1ba+1=(\sum_{k=a}^{b} e^{itk})\frac{1}{b-a+1}
=eaite(b+1)it(1eit)(ba+1)=\frac{e^{ait}-e^{(b+1)it}}{(1-e^{it})(b-a+1)}
M(t)=1ba+1(aeat(b+1)e(b+1)t)(1et)+(eate(b+1)t)et(et1)2M'(t)=\frac{1}{b-a+1}\frac{(ae^{at}-(b+1)e^{(b+1)t})(1-e^t)+(e^{at}-e^{(b+1)t})e^t}{(e^{t}-1)^{2}}
t=0M(t)M(0)=limt0M(t)t=0爲M'(t)的可去間斷點,補充定義M'(0)=\lim_{t\rightarrow0}M'(t)
EX=M(0)=limt01ba+1(a2eat(b+1)2e(b+1)t)(1et)+(eate(b+1)t)et2(et1)etEX=M'(0)=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^2e^{at}-(b+1)^2e^{(b+1)t})(1-e^t)+(e^{at}-e^{(b+1)t})e^t}{2(e^{t}-1)e^t}
=limt01ba+1(a2eat(b+1)2e(b+1)t)(et1)+(eate(b+1)t)2(et1)=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^2e^{at}-(b+1)^2e^{(b+1)t})(e^{-t}-1)+(e^{at}-e^{(b+1)t})}{2(e^{t}-1)}
=limt01ba+1(a3eat(b+1)3e(b+1)t)(et1)(a2eat(b+1)2e(b+1)t)et+(aeat(b+1)e(b+1)t)2et=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^3e^{at}-(b+1)^3e^{(b+1)t})(e^{-t}-1)-(a^2e^{at}-(b+1)^2e^{(b+1)t})e^{-t}+(ae^{at}-(b+1)e^{(b+1)t})}{2e^{t}}
=a2+(b+1)2+a(b+1)2(ba+1)=\frac{-a^2+(b+1)^2+a-(b+1)}{2(b-a+1)}
=a2+(b+1)22(ba+1)12=\frac{-a^2+(b+1)^2}{2(b-a+1)}-\frac{1}{2}
=(b+1a)(b+1+a)2(ba+1)12=\frac{(b+1-a)(b+1+a)}{2(b-a+1)}-\frac{1}{2}
=b+1+a212=\frac{b+1+a}{2}-\frac{1}{2}
=b+a2=\frac{b+a}{2}
M(t)M(t)M(0)t=0M由於對M'(t)求導得到M''(t),再求M''(0)的方法比較繁瑣,而我們只需要t=0時M的二階導數值,
使TaylorM(0)因此可以考慮使用Taylor公式計算M''(0)
1et=u,t=0,u=0令1-e^t=u,t=0時,u=0
M(t)=eate(b+1)t(1et)(ba+1)M(t)=\frac{e^{at}-e^{(b+1)t}}{(1-e^{t})(b-a+1)}
=1ba+1uaub+1u=\frac{1}{b-a+1}\frac{u^a-u^{b+1}}{u}
=1ba+11+a1!(u)+a(a1)2!u2+a(a1)(a2)3!(u3)+o(u3)1b+11!(u)(b+1)b2!u2(b+1)b(b1)3!(u3)o(u3)u=\frac{1}{b-a+1}\frac{1+\frac{a}{1!}(-u)+\frac{a(a-1)}{2!}u^2+\frac{a(a-1)(a-2)}{3!}(-u^3)+o(u^3)-1-\frac{b+1}{1!}(-u)-\frac{(b+1)b}{2!}u^2-\frac{(b+1)b(b-1)}{3!}(-u^3)-o(u^3)}{u}
=1ba+1a1!(u)+a(a1)2!u2+a(a1)(a2)3!(u3)+o(u3)b+11!(u)(b+1)b2!u2(b+1)b(b1)3!(u3)u=\frac{1}{b-a+1}\frac{\frac{a}{1!}(-u)+\frac{a(a-1)}{2!}u^2+\frac{a(a-1)(a-2)}{3!}(-u^3)+o(u^3)-\frac{b+1}{1!}(-u)-\frac{(b+1)b}{2!}u^2-\frac{(b+1)b(b-1)}{3!}(-u^3)}{u}
=1ba+1((b+1a)+a(a1)2!u+a(a1)(a2)3!(u2)+o(u2)(b+1)b2!u(b+1)b(b1)3!(u2))=\frac{1}{b-a+1}((b+1-a)+\frac{a(a-1)}{2!}u+\frac{a(a-1)(a-2)}{3!}(-u^2)+o(u^2)-\frac{(b+1)b}{2!}u-\frac{(b+1)b(b-1)}{3!}(-u^2))
=1+a(a1)(b+1)b2!(ba+1)u+(b+1)b(b1)a(a1)(a2)3!(ba+1)u2+o(u2)=1+\frac{a(a-1)-(b+1)b}{2!(b-a+1)}u+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}u^2+o(u^2)
u=1et=tt22!+o(t2)而u=1-e^t=-t-\frac{t^2}{2!}+o(t^2)
M(t)=1a(a1)(b+1)b2!(ba+1)ta(a1)(b+1)b2!(ba+1)t22!+(b+1)b(b1)a(a1)(a2)3!(ba+1)t2+o(t2)因此M(t)=1-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}t-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}\frac{t^2}{2!}+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}t^2+o(t^2)
M(t)=M(0)+M(0)t+M(0)2!t2+o(t2)又因爲M(t)=M(0)+M'(0)t+\frac{M''(0)}{2!}t^2+o(t^2)
M(0)=a(a1)(b+1)b2!(ba+1)=a+b2因此M'(0)=-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}=\frac{a+b}{2}
EX=M(0)=a+b2EX=M'(0)=\frac{a+b}{2}
M(0)=2!(a(a1)(b+1)b4(ba+1)+(b+1)b(b1)a(a1)(a2)3!(ba+1))而M''(0)=2!*(-\frac{a(a-1)-(b+1)b}{4(b-a+1)}+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)})
=a+b2+(b+1a)(b2+abb+a22a)3(ba+1)=\frac{a+b}{2}+\frac{(b+1-a)(b^2+ab-b+a^2-2a)}{3(b-a+1)}
=a+b2+b2+abb+a22a3=\frac{a+b}{2}+\frac{b^2+ab-b+a^2-2a}{3}
=2a2+2b2+2ab+ba6=\frac{2a^2+2b^2+2ab+b-a}{6}
DX=EX2(EX)2=M(0)(EX)2DX=EX^2-(EX)^2=M''(0)-(EX)^2
=2a2+2b2+2ab+ba6a2+2ab+b24=\frac{2a^2+2b^2+2ab+b-a}{6}-\frac{a^2+2ab+b^2}{4}
=(ba+1)2112=\frac{(b-a+1)^2-1}{12}

2、伯努利分佈/兩點分佈(Bernoulli distribution)

XB(1,p),X滿P(x=1)=p,P(x=0)=1p=q若X服從伯努利分佈B(1,p) ,則X滿足P(x=1)=p, P(x=0)=1-p=q
M(t)=pet+1pM(t)=pe^{t}+1-p
φ(t)=peit+1p\varphi(t)=pe^{it}+1-p
M(t)=petM'(t)=pe^{t}
EX=M(0)=pEX=M'(0)=p
M(t)=petM''(t)=pe^{t}
EX2=M(0)=pEX^{2}=M''(0)=p
DX=EX2(EX)2=p(1p)DX=EX^{2}-(EX)^{2}=p(1-p)

3、二項分佈(Binomial distribution)

XB(n,p),X滿f(k;n,p)=P(x=k)=Cnkpk(1p)nk(n)若X服從二項分佈B(n,p) ,則X滿足f(k;n,p)=P(x=k)=C_{n}^{k}p^k(1-p)^{n-k} (n爲整數)
n因爲服從二項分佈的變量可以看作n個獨立相同的服從伯努利分佈的變量之和
M(t)=(pet+1p)n因此M(t)=(pe^{t}+1-p)^{n}
φ(t)=(peit+1p)n\varphi(t)=(pe^{it}+1-p)^{n}
M(t)=np(pet+1p)n1etM'(t)=np(pe^{t}+1-p)^{n-1}e^{t}
EX=M(0)=npEX=M'(0)=np
M(t)=n(n1)p2(pet+1p)n2e2t+np(pet+1p)n1etM''(t)=n(n-1)p^{2}(pe^{t}+1-p)^{n-2}e^{2t}+np(pe^{t}+1-p)^{n-1}e^{t}
EX2=M(0)=n(n1)p2+npEX^{2}=M''(0)=n(n-1)p^{2}+np
DX=EX2(EX)2=np(1p)DX=EX^{2}-(EX)^{2}=np(1-p)

4、幾何分佈(Geometric distribution)

XGe(p),X滿f(k;p)=P(x=k)=(1p)k1p(k=1,2,3......)若X服從幾何分佈Ge(p), 則X滿足f(k;p)=P(x=k)=(1-p)^{k-1}p (k=1,2,3......)
M(t)=k=1(1p)k1petkM(t)=\sum_{k=1}^{\infin}(1-p)^{k-1}pe^{tk}
=petk=1((1p)et)k1=pe^{t}\sum_{k=1}^{\infin}((1-p)e^t)^{k-1}
=pet1(1p)et=\frac{pe^{t}}{1-(1-p)e^{t}}
φ(t)=k=1(1p)k1peitk\varphi(t)=\sum_{k=1}^{\infin}(1-p)^{k-1}pe^{itk}
=peitk=1((1p)eit)k1=pe^{it}\sum_{k=1}^{\infin}((1-p)e^{it})^{k-1}
=peit1(1p)eit=\frac{pe^{it}}{1-(1-p)e^{it}}
M(t)=pet(1(1p)et)2M'(t)=\frac{pe^t}{(1-(1-p)e^t)^2}
EX=M(0)=1pEX=M'(0)=\frac{1}{p}
M(t)=pet(etpet+1)(1(1p)et)3M''(t)=\frac{pe^t(e^t-pe^t+1)}{(1-(1-p)e^t)^3}
EX2=M(0)=2pp2EX^{2}=M''(0)=\frac{2-p}{p^2}
DX=EX2(EX)2=1pp2DX=EX^{2}-(EX)^{2}=\frac{1-p}{p^2}

5、負二項分佈(Negative binomial distribution)

XNB(r,p),X滿f(k;r,p)=(k+r1k)pk(1p)r,k=0,1,2,3......若X服從負二項分佈NB(r,p), 則X滿足f(k;r,p)=\binom{k+r-1}{k}p^{k}(1-p)^{r} , k=0,1,2,3......
(r)(r可以爲實數,此時的分佈稱爲波利亞分佈)
M(t)=k=0(k+r1k)pk(1p)retkM(t)=\sum_{k=0}^{\infin}\binom{k+r-1}{k}p^k(1-p)^re^{tk}
=k=0(1)k(rk)pk(1p)retk=\sum_{k=0}^{\infin}(-1)^k\binom{-r}{k}p^k(1-p)^re^{tk}
=k=0(pet)k(rk)(1p)r=\sum_{k=0}^{\infin}(-pe^t)^k\binom{-r}{k}(1-p)^r
=(1p)rk=0(pet)k(rk)1rk=(1-p)^r\sum_{k=0}^{\infin}(-pe^t)^k\binom{-r}{k}1^{-r-k}
=(1p)r(1pet)r=(1-p)^r(1-pe^t)^{-r}
φ(t)=k=0(k+r1k)pk(1p)reitk\varphi(t)=\sum_{k=0}^{\infin}\binom{k+r-1}{k}p^k(1-p)^re^{itk}
=k=0(1)k(rk)pk(1p)reitk=\sum_{k=0}^{\infin}(-1)^k\binom{-r}{k}p^k(1-p)^re^{itk}
=k=0(peit)k(rk)(1p)r=\sum_{k=0}^{\infin}(-pe^{it})^k\binom{-r}{k}(1-p)^r
=(1p)rk=0(peit)k(rk)1rk=(1-p)^r\sum_{k=0}^{\infin}(-pe^{it})^k\binom{-r}{k}1^{-r-k}
=(1p)r(1peit)r=(1-p)^r(1-pe^{it})^{-r}
M(t)=(1p)r(r)(1pet)r1(pet)M'(t)=(1-p)^r(-r)(1-pe^{t})^{-r-1}(-pe^t)
=rp(1p)ret(1pet)r1=rp(1-p)^re^t(1-pe^t)^{-r-1}
EX=M(0)=rp1pEX=M'(0)=\frac{rp}{1-p}
M(t)=rp(1p)ret(1pet)r1+rp(1p)ret(r1)(1pet)r2(pet)M''(t)=rp(1-p)^re^t(1-pe^t)^{-r-1}+rp(1-p)^re^t(-r-1)(1-pe^t)^{-r-2}(-pe^t)
EX2=rp(1p)1+r(r+1)p2(1p)2EX^2=rp(1-p)^{-1}+r(r+1)p^2(1-p)^{-2}
=rp(1p)+r(r+1)p2(1p)2=\frac{rp(1-p)+r(r+1)p^2}{(1-p)^2}
=rp+r2p2(1p)2=\frac{rp+r^2p^2}{(1-p)^2}
DX=EX2(EX)2=pr(1p)2DX=EX^2-(EX)^2=\frac{pr}{(1-p)^2}

6、泊松分佈(Poisson distribution)

XP(λ),P(X=k)=eλλkk!,k=0,1,2......若X服從泊松分佈P(\lambda),則P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!},k=0,1,2......
M(t)=k=0eλλkk!etkM(t)=\sum_{k=0}^{\infin}\frac{e^{-\lambda}\lambda^k}{k!}e^{tk}
=eλk=0(λet)kk!=e^{-\lambda}\sum_{k=0}^{\infin}\frac{(\lambda e^t)^k}{k!}
=eλeλet=e^{-\lambda}e^{\lambda e^t}
=eλ(et1)=e^{\lambda (e^t-1)}
φ(t)=k=0eλλkk!eitk\varphi(t)=\sum_{k=0}^{\infin}\frac{e^{-\lambda}\lambda^k}{k!}e^{itk}
=eλk=0(λeit)kk!=e^{-\lambda}\sum_{k=0}^{\infin}\frac{(\lambda e^{it})^k}{k!}
=eλeλeit=e^{-\lambda}e^{\lambda e^{it}}
=eλ(eit1)=e^{\lambda (e^{it}-1)}
M(t)=eλ(et1)λetM'(t)=e^{\lambda (e^t-1)}\lambda e^t
EX=M(0)=λEX=M'(0)=\lambda
M(t)=eλ(et1)λet+eλ(et1)λetλetM''(t)=e^{\lambda (e^t-1)}\lambda e^t+e^{\lambda (e^t-1)}\lambda e^t\lambda e^t
EX2=M(0)=λ+λ2EX^2=M''(0)=\lambda+\lambda^2
DX=EX2(EX)2=λDX=EX^2-(EX)^2=\lambda

三、連續型隨機變量的分佈

1、連續型均勻分佈(Uniform distribution (continuous))

XU(a,b),f(x)=1baI[a,b](x)若X服從連續型均勻分佈U(a,b),則f(x)=\frac{1}{b-a}I_{[a,b]}(x)
M(t)=ab1baetxdxM(t)=\int_{a}^{b}\frac{1}{b-a}e^{tx}dx
=1baabetxdx=\frac{1}{b-a}\int_{a}^{b}e^{tx}dx
=1ba(1tetxab)=\frac{1}{b-a}(\frac{1}{t}e^{tx}\mid_{a}^{b})
=etbetat(ba)=\frac{e^{tb}-e^{ta}}{t(b-a)}
φ(t)=ab1baeitxdx\varphi(t)=\int_{a}^{b}\frac{1}{b-a}e^{itx}dx
=1baabeitxdx=\frac{1}{b-a}\int_{a}^{b}e^{itx}dx
=1ba(1iteitxab)=\frac{1}{b-a}(\frac{1}{it}e^{itx}\mid_{a}^{b})
=eitbeitait(ba)=\frac{e^{itb}-e^{ita}}{it(b-a)}
M(t)=1ba(betbaeta)t(etbeta)t2M'(t)=\frac{1}{b-a}\frac{(be^{tb}-ae^{ta})t-(e^{tb}-e^{ta})}{t^2}
t=0M(t)M(0)=limt0M(t)t=0爲M'(t)的可去間斷點,補充定義M'(0)=\lim_{t\rightarrow0}M'(t)
EX=M(0)=limt0(betbaeta)+(b2etba2eta)t(betbaeta)2t(ba)EX=M'(0)=\lim_{t\rightarrow0}\frac{(be^{tb}-ae^{ta})+(b^2e^{tb}-a^2e^{ta})t-(be^{tb}-ae^{ta})}{2t(b-a)}
=limt0(b2etba2eta)2(ba)=\lim_{t\rightarrow0}\frac{(b^2e^{tb}-a^2e^{ta})}{2(b-a)}
=b2a22(ba)=\frac{b^2-a^2}{2(b-a)}
=a+b2=\frac{a+b}{2}
M(t)=1ba((b2etba2eta)t+(betbaeta)(betbaeta))t2((betbaeta)t(etbeta))t3M''(t)=\frac{1}{b-a}\frac{((b^2e^{tb}-a^2e^{ta})t+(be^{tb}-ae^{ta})-(be^{tb}-ae^{ta}))t-2((be^{tb}-ae^{ta})t-(e^{tb}-e^{ta}))}{t^3}
=1bat2(b2etba2eta)2t(betbaeta)+2(etbeta)t3=\frac{1}{b-a}\frac{t^2(b^2e^{tb}-a^2e^{ta})-2t(be^{tb}-ae^{ta})+2(e^{tb}-e^{ta})}{t^3}
t=0M(t)M(0)=limt0M(t)t=0爲M''(t)的可去間斷點,補充定義M''(0)=\lim_{t\rightarrow0}M''(t)
EX2=M(0)=limt01bat2(b3etba3eta)+2t(b2etba2eta)2t(b2etba2eta)2(betbaeta)+2(betbaeta)3t2EX^2=M''(0)=\lim_{t\rightarrow0}\frac{1}{b-a}\frac{t^2(b^3e^{tb}-a^3e^{ta})+2t(b^2e^{tb}-a^2e^{ta})-2t(b^2e^{tb}-a^2e^{ta})-2(be^{tb}-ae^{ta})+2(be^{tb}-ae^{ta})}{3t^2}
=1balimt0t2(b3etba3eta)3t2=\frac{1}{b-a}\lim_{t\rightarrow0}\frac{t^2(b^3e^{tb}-a^3e^{ta})}{3t^2}
=1balimt0(b3etba3eta)3=\frac{1}{b-a}\lim_{t\rightarrow0}\frac{(b^3e^{tb}-a^3e^{ta})}{3}
=1ba(b3a3)3=\frac{1}{b-a}\frac{(b^3-a^3)}{3}
=b2+ab+a23=\frac{b^2+ab+a^2}{3}
DX=EX2(EX)2=(ba)212DX=EX^2-(EX)^2=\frac{(b-a)^2}{12}

2、指數分佈(Exponential distribution)

XE(λ)f(x)=λeλxI[0,+)(x)若X服從指數分佈E(\lambda),則f(x)=\lambda e^{-\lambda x}I_{[0,+\infin)}(x)
M(t)=0+λeλxetxdxM(t)=\int_{0}^{+\infin} \lambda e^{-\lambda x}e^{tx}dx
=λ0+e(tλ)xdx=\lambda \int_{0}^{+\infin} e^{(t-\lambda)x}dx
=λtλ(e(tλ)x0+)=\frac{\lambda}{t-\lambda}(e^{(t-\lambda)x}\mid_{0}^{+\infin})
t<λM(t)=λtλ(01)t<\lambda時,M(t)=\frac{\lambda}{t-\lambda}(0-1)
=λλt=\frac{\lambda}{\lambda-t}
φ(t)=λλit\varphi(t)=\frac{\lambda}{\lambda-it}
M(t)=λ(λt)2M'(t)=\frac{\lambda}{(\lambda-t)^2}
EX=M(0)=1λEX=M'(0)=\frac{1}{\lambda}
M(t)=2λ(λt)3M''(t)=\frac{2\lambda}{(\lambda-t)^3}
EX2=M(0)=2λ2EX^2=M''(0)=\frac{2}{\lambda^2}
DX=EX2(EX)2=1λ2DX=EX^2-(EX)^2=\frac{1}{\lambda^2}

3、正態分佈(Normal distribution)

XN(μ,σ2),f(x)=12πσe(xμ)22σ2若X服從正態分佈N(\mu,\sigma^2),則f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}
1+et22dt=2π引理1:\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sqrt{2\pi}
(+et22dt)2=++ex2+y22dxdy證明:(\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt)^2=\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin}e^{-\frac{x^2+y^2}{2}}dxdy
=02πdθ0+er22rdr=\int_{0}^{2\pi}d\theta \int_{0}^{+\infin}e^{-\frac{r^2}{2}}rdr
=2π0+er22rdr=2\pi \int_{0}^{+\infin}e^{-\frac{r^2}{2}}rdr
=2π(er220+)=2\pi (-e^{-\frac{r^2}{2}}\mid_{0}^{+\infin})
=2π=2\pi
+et22dt=2π因此\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sqrt{2\pi}
M(t)=+12πσe(xμ)22σ2etxdxM(t)=\int_{-\infin}^{+\infin}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}e^{tx}dx
=12πσ+e(xμ)22σ2+txdx=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}+tx}dx
w=xμσ令w=\frac{x-\mu}{\sigma}
=12π+ew22+t(wσ+μ)dw原式=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+t(w\sigma+\mu)}dw
=eμt12π+ew22+tσwdw=e^{\mu t}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+t\sigma w}dw
=eμt12π+e(wtσ)2t2σ22dw=e^{\mu t}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-t\sigma)^2-t^2\sigma^2}{2}}dw
=eμt+t2σ2212π+e(wtσ)22dw=e^{\mu t+\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-t\sigma)^2}{2}}dw
=eμt+t2σ2212π2π=e^{\mu t+\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\sqrt{2\pi}
=eμt+t2σ22=e^{\mu t+\frac{t^2\sigma^2}{2}}
φ(t)=+12πσe(xμ)22σ2eitxdx\varphi(t)=\int_{-\infin}^{+\infin}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}e^{itx}dx
=12πσ+e(xμ)22σ2+itxdx=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}+itx}dx
w=xμσ令w=\frac{x-\mu}{\sigma}
=12π+ew22+it(wσ+μ)dw原式=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+it(w\sigma+\mu)}dw
=eiμt12π+ew22+itσwdw=e^{i\mu t}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+it\sigma w}dw
=eiμt12π+e(witσ)2+t2σ22dw=e^{i\mu t}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-it\sigma)^2+t^2\sigma^2}{2}}dw
=eiμtt2σ2212π+e(witσ)22dw=e^{i\mu t-\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-it\sigma)^2}{2}}dw
=eiμtt2σ2212π2π=e^{i\mu t-\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\sqrt{2\pi}
=eiμtt2σ22=e^{i\mu t-\frac{t^2\sigma^2}{2}}
M(t)=eμt+t2σ22(μ+σ2t)M'(t)=e^{\mu t+\frac{t^2\sigma^2}{2}}(\mu+\sigma^2t)
EX=M(0)=μEX=M'(0)=\mu
M(t)=eμt+t2σ22(μ+σ2t)2+eμt+t2σ22σ2M''(t)=e^{\mu t+\frac{t^2\sigma^2}{2}}(\mu+\sigma^2t)^2+e^{\mu t+\frac{t^2\sigma^2}{2}}\sigma^2
EX2=M(0)=μ2+σ2EX^2=M''(0)=\mu^2+\sigma^2
DX=EX2(EX)2=σ2DX=EX^2-(EX)^2=\sigma^2
,XN(0,1)特別地,X服從標準正態分佈N(0,1)時
M(t)=et22M(t)=e^{\frac{t^2}{2}}
φ(t)=et22\varphi(t)=e^{-\frac{t^2}{2}}
EX=0,DX=1EX=0,DX=1

4、伽馬分佈(Gamma distribution)

XΓ(α,β)(α,β>0),f(x)=βαΓ(α)xα1eβxI(0,+)(x)若X服從伽馬分佈\Gamma(\alpha,\beta)(\alpha,\beta>0),則f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}I_{(0,+\infin)}(x)
Γ(α)=0+tα1etdt,α>0其中,\Gamma(\alpha)=\int_{0}^{+\infin}t^{\alpha-1}e^{-t}dt,\alpha>0
E(λ)Γ(1,λ),χ2χn2Γ(n2,12)指數分佈E(\lambda)是伽馬分佈\Gamma(1,\lambda),\chi^2分佈\chi^2_n是伽馬分佈\Gamma(\frac{n}{2},\frac{1}{2})
M(t)=0+βαΓ(α)xα1eβxetxdxM(t)=\int_{0}^{+\infin}\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}e^{tx}dx
=0+βαΓ(α)xα1e(tβ)xdx=\int_{0}^{+\infin}\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{(t-\beta) x}dx
=βα0+1Γ(α)xα1e(tβ)xdx=\beta^\alpha\int_{0}^{+\infin}\frac{1}{\Gamma(\alpha)}x^{\alpha-1}e^{(t-\beta) x}dx
t<βv=(βt)x=βαβt0+1Γ(α)(vβt)α1evdvt<\beta時,令v=(\beta-t)x,原式=\frac{\beta^\alpha}{\beta-t}\int_{0}^{+\infin}\frac{1}{\Gamma(\alpha)}(\frac{v}{\beta-t})^{\alpha-1}e^{-v}dv
=(ββt)α1Γ(α)0+vα1evdv=(\frac{\beta}{\beta-t})^\alpha\frac{1}{\Gamma(\alpha)}\int_{0}^{+\infin}v^{\alpha-1}e^{-v}dv
=(ββt)α1Γ(α)Γ(α)=(\frac{\beta}{\beta-t})^\alpha\frac{1}{\Gamma(\alpha)}\Gamma(\alpha)
=(ββt)α=(\frac{\beta}{\beta-t})^\alpha
φ(t)=(ββit)α\varphi(t)=(\frac{\beta}{\beta-it})^\alpha
M(t)=βα(βt)α1αM'(t)=\beta^\alpha(\beta-t)^{-\alpha-1}\alpha
EX=M(0)=αβEX=M'(0)=\frac{\alpha}{\beta}
M(t)=βα(βt)α2α(α+1)M''(t)=\beta^\alpha(\beta-t)^{-\alpha-2}\alpha(\alpha+1)
EX2=α(α+1)β2EX^2=\frac{\alpha(\alpha+1)}{\beta^2}
DX=EX2(EX)2=αβ2DX=EX^2-(EX)^2=\frac{\alpha}{\beta^2}

5、貝塔分佈(Beta distribution)

XBe(α,β)(α,β>0)f(x)=xα1(1x)β101uα1(1u)β1duI(0,1)(x)若X服從貝塔分佈\Beta e(\alpha,\beta)(\alpha,\beta>0),則f(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\int_{0}^{1} u^{\alpha-1}(1-u)^{\beta-1}du}I_{(0,1)}(x)
=Γ(α+β)Γ(α)Γ(β)xα1(1x)β1I(0,1)(x)=1B(α,β)xα1(1x)β1I(0,1)(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}I_{(0,1)}(x)=\frac{1}{\Beta(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}I_{(0,1)}(x)
,B(α,β)=01uα1(1u)β1du,(α,β>0)其中,\Beta(\alpha,\beta)=\int_{0}^{1} u^{\alpha-1}(1-u)^{\beta-1}du,(\alpha,\beta>0)

M(t)=011B(α,β)xα1(1x)β1etxdxM(t)=\int_{0}^{1}\frac{1}{\Beta(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}e^{tx}dx
E(X)=011B(α,β)xα1(1x)β1xdxE(X)=\int_{0}^{1}\frac{1}{\Beta(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}xdx
=011B(α,β)xα(1x)β1xdx=\int_{0}^{1}\frac{1}{\Beta(\alpha,\beta)}x^{\alpha}(1-x)^{\beta-1}xdx
=01xα(1x)β1xdxB(α,β)=\frac{\int_{0}^{1}x^{\alpha}(1-x)^{\beta-1}xdx}{\Beta(\alpha,\beta)}
=B(α+1,β)B(α,β)=\frac{\Beta(\alpha+1,\beta)}{\Beta(\alpha,\beta)}
=Γ(α+1)Γ(β)Γ(α+β+1)Γ(α)Γ(β)Γ(α+β)=\frac{\frac{\Gamma(\alpha+1)\Gamma(\beta)}{\Gamma(\alpha+\beta+1)}}{\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}}
=αα+β=\frac{\alpha}{\alpha+\beta}
E(X2)=011B(α,β)xα1(1x)β1x2dxE(X^2)=\int_{0}^{1}\frac{1}{\Beta(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}x^2dx
=01xα+1(1x)β1dxB(α,β)=\frac{\int_{0}^{1}x^{\alpha+1}(1-x)^{\beta-1}dx}{\Beta(\alpha,\beta)}
=B(α+2,β)B(α,β)=\frac{\Beta(\alpha+2,\beta)}{\Beta(\alpha,\beta)}
=Γ(α+2)Γ(β)Γ(α+β+2)Γ(α)Γ(β)Γ(α+β)=\frac{\frac{\Gamma(\alpha+2)\Gamma(\beta)}{\Gamma(\alpha+\beta+2)}}{\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}}
=α(α+1)(α+β+1)(α+β)=\frac{\alpha(\alpha+1)}{(\alpha+\beta+1)(\alpha+\beta)}
D(X)=E(X2)(EX)2D(X)=E(X^2)-(EX)^2
=α(α+1)(α+β+1)(α+β)α2(α+β)2=\frac{\alpha(\alpha+1)}{(\alpha+\beta+1)(\alpha+\beta)}-\frac{\alpha^2}{(\alpha+\beta)^2}
=αβ(α+β+1)(α+β)2=\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}

6、t分佈(Student’s t-distribution)

Xntt(x,n)f(x)=Γ(n+12)nπΓ(n2)(1+x2n)n+12,xR若X服從自由度爲n的t分佈t(x,n),則f(x)=\frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})}(1+\frac{x^2}{n})^{-\frac{n+1}{2}},x∈R

7 、F分佈(F-distribution)

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章