李永樂複習全書高等數學 第五章 多元函數微分學

5.1  多元函數的極限、連續、偏導數與全微分(概念)

例2  試求下列二次極限:

(1)limy0x0x2+y2x+y;\lim\limits_{y\to0 \atop x\to0}\cfrac{x^2+y^2}{|x|+|y|};

  由於0x2+y2x+y=x2x+y+y2x+yx2x+y2y=x+y0\leqslant\cfrac{x^2+y^2}{|x|+|y|}=\cfrac{x^2}{|x|+|y|}+\cfrac{y^2}{|x|+|y|}\leqslant\cfrac{x^2}{|x|}+\cfrac{y^2}{|y|}=|x|+|y|,而limy0x0(x+y)=0\lim\limits_{y\to0 \atop x\to0}(|x|+|y|)=0,由夾擠定理知limy0x0x2+y2x+y=0\lim\limits_{y\to0 \atop x\to0}\cfrac{x^2+y^2}{|x|+|y|}=0。(這道題主要利用了夾擠定理求解

(4)limy0x02xy2sinxx2+y4.\lim\limits_{y\to0 \atop x\to0}\cfrac{2xy^2\sin x}{x^2+y^4}.

  由於2xy2sinxx2+y41(2aba2+b2)\left|\cfrac{2xy^2\sin x}{x^2+y^4}\right|\leqslant1(2ab\leqslant a^2+b^2),即爲有界量,而limx0sinx=0\lim\limits_{x\to0}\sin x=0,即爲無窮小量,則原式=0=0。(這道題主要利用了無窮小量代換求解

例11  設fx(x,y)f'_x(x,y)存在,fy(x,y)f'_y(x,y)在點(x0,y0)(x_0,y_0)處連續,證明:f(x,y)f(x,y)在點(x0,y0)(x_0,y_0)處可微。


Δz=f(x0+Δx,y0+Δy)f(x0,y0)=f(x0+Δx,y0+Δy)f(x0+Δx,y0)+f(x0+Δx,y0)f(x0,y0). \begin{aligned} \Delta z&=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)\\ &=f(x_0+\Delta x,y_0+\Delta y)-f(x_0+\Delta x,y_0)+f(x_0+\Delta x,y_0)-f(x_0,y_0). \end{aligned}
  由一元拉格朗日中值定理知f(x0+Δx,y0+Δy)f(x0+Δx,y0)=fy(x0+Δx,y0+θ2Δy)Δyf(x_0+\Delta x,y_0+\Delta y)-f(x_0+\Delta x,y_0)=f'_y(x_0+\Delta x,y_0+\theta_2\Delta y)\Delta y。由fy(x,y)f'_y(x,y)(x0,y0)(x_0,y_0)處連續,則limΔx0Δy0fy(x0+Δx,y0+θ2Δy)=fy(x0,y0)\lim\limits_{\Delta x\to0 \atop \Delta y\to0}f'_y(x_0+\Delta x,y_0+\theta_2\Delta y)=f'_y(x_0,y_0),從而有f(x0+Δx,y0+Δy)f(x0+Δx,y0)=fy(x0,y0)Δy+ϵ2Δyf(x_0+\Delta x,y_0+\Delta y)-f(x_0+\Delta x,y_0)=f'_y(x_0,y_0)\Delta y+\epsilon_2\Delta y,其中ϵ2\epsilon_2Δx0,Δy0\Delta x\to0,\Delta y\to0時的無窮小量。
  又由於fx(x,y)f'_x(x,y)存在,則limΔx0f(x0+Δx,y0)f(x0,y0)Δx=fx(x0,y0)\lim\limits_{\Delta x\to0}\cfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=f'_x(x_0,y_0),從而有f(x0+Δx,y0)f(x0,y0)Δx=fx(x0,y0)+ϵ1\cfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=f'_x(x_0,y_0)+\epsilon_1,其中ϵ1\epsilon_1Δx0,Δy0\Delta x\to0,\Delta y\to0時的無窮小量。則f(x0+Δx,y0)f(x0,y0)=fx(x0,y0)Δx+ϵ1Δxf(x_0+\Delta x,y_0)-f(x_0,y_0)=f'_x(x_0,y_0)\Delta x+\epsilon_1\Delta x
  由於ϵ1Δx+ϵ2Δy(Δx)2+(Δy)2ϵ1Δx+ϵ2Δy(Δx)2+(Δy)2ϵ1+ϵ20(Δx0,Δy0)\left|\cfrac{\epsilon_1\Delta x+\epsilon_2\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\right|\leqslant\cfrac{|\epsilon_1||\Delta x|+|\epsilon_2||\Delta y|}{\sqrt{(\Delta x)^2+(\Delta y)^2}}\leqslant|\epsilon_1|+|\epsilon_2|\to0(\Delta x\to0,\Delta y\to0),則當Δx0,Δy0\Delta x\to0,\Delta y\to0時,ϵ1Δx+ϵ2Δy=ο(ρ)\epsilon_1\Delta x+\epsilon_2\Delta y=\omicron(\rho),故f(x,y)f(x,y)(x0,y0)(x_0,y_0)處可微。(這道題主要利用了多元函數極限定義求解

5.2  多元函數的微分法

例26  設函數u=f(x,y)u=f(x,y)具有二階連續偏導數,且滿足42ux2+122uxy+52uy2=04\cfrac{\partial^2u}{\partial x^2}+12\cfrac{\partial^2u}{\partial x\partial y}+5\cfrac{\partial^2u}{\partial y^2}=0。確定a,ba,b的值,使等式ξ=x+ay,η=x+by\xi=x+ay,\eta=x+by在變換下簡化爲2uξη\cfrac{\partial^2u}{\partial\xi\partial\eta}


ux=uξ+uη,2ux2=2uξ2+22uξη+2uη2,uy=auξ+buη,2uy2=a22uξ2+2ab2uξη+b22uη2,2uxy=a22uξ2+(a+b)2uξη+b2uη2, \cfrac{\partial u}{\partial x}=\cfrac{\partial u}{\partial\xi}+\cfrac{\partial u}{\partial\eta},\cfrac{\partial^2u}{\partial x^2}=\cfrac{\partial^2u}{\partial\xi^2}+2\cfrac{\partial^2u}{\partial\xi\partial\eta}+\cfrac{\partial^2u}{\partial\eta^2},\\ \cfrac{\partial u}{\partial y}=a\cfrac{\partial u}{\partial\xi}+b\cfrac{\partial u}{\partial\eta},\cfrac{\partial^2u}{\partial y^2}=a^2\cfrac{\partial^2u}{\partial\xi^2}+2ab\cfrac{\partial^2u}{\partial\xi\partial\eta}+b^2\cfrac{\partial^2u}{\partial\eta^2},\\ \cfrac{\partial^2u}{\partial x\partial y}=a^2\cfrac{\partial^2u}{\partial\xi^2}+(a+b)\cfrac{\partial^2u}{\partial\xi\partial\eta}+b\cfrac{\partial^2u}{\partial\eta^2},
  將以上三個二階偏導數代入等式42ux2+122uxy+52uy2=04\cfrac{\partial^2u}{\partial x^2}+12\cfrac{\partial^2u}{\partial x\partial y}+5\cfrac{\partial^2u}{\partial y^2}=0(5a2+12a+4)2uξ2+[10ab+12(a+b)+8]2uxy+(5b2+12b+4)2uy2=0(5a^2+12a+4)\cfrac{\partial^2u}{\partial\xi^2}+[10ab+12(a+b)+8]\cfrac{\partial^2u}{\partial x\partial y}+(5b^2+12b+4)\cfrac{\partial^2u}{\partial y^2}=0
  由題設知{5a2+12a+4=0,5b2+12b+4=0,\begin{cases}5a^2+12a+4=0,\\5b^2+12b+4=0,\end{cases}10ab+12(a+b)+8010ab+12(a+b)+8\ne0,解得{a=2,b=25,\begin{cases}a=-2,\\b=-\cfrac{2}{5},\end{cases}{a=25,b=2.\begin{cases}a=-\cfrac{2}{5},\\b=-2.\end{cases}這道題主要利用了多元複合函數求導求解

例28  設(r,θ)(r,\theta)爲極座標,u=u(r,θ)u=u(r,\theta)r>0r>0時具有二階連續偏導數,並滿足uθ0\cfrac{\partial u}{\partial\theta}\equiv0,且2ux2+2uy2=0\cfrac{\partial^2u}{\partial x^2}+\cfrac{\partial^2u}{\partial y^2}=0,求u(r,θ)u(r,\theta)

  由uθ0\cfrac{\partial u}{\partial\theta}\equiv0知,uu僅爲rr的函數,令u=φ(r)u=\varphi(r),其中r=x2+y2,r>0r=\sqrt{x^2+y^2},r>0。則
ux=φ(r)xx2+y2=φ(x)xr,2ux2=φ(x)x2r2+φ(r)rx2rr2=φ(r)x2r2+φ(r)(1rx2r3). \cfrac{\partial u}{\partial x}=\varphi'(r)\cfrac{x}{\sqrt{x^2+y^2}}=\varphi'(x)\cfrac{x}{r},\\ \cfrac{\partial^2u}{\partial x^2}=\varphi''(x)\cfrac{x^2}{r^2}+\varphi'(r)\cfrac{r-\cfrac{x^2}{r}}{r^2}=\varphi''(r)\cfrac{x^2}{r^2}+\varphi'(r)\left(\cfrac{1}{r}-\cfrac{x^2}{r^3}\right).
  由對稱性可得2uy2=φ(x)y2r2+φ(r)(1ry2r3)\cfrac{\partial^2u}{\partial y^2}=\varphi''(x)\cfrac{y^2}{r^2}+\varphi'(r)\left(\cfrac{1}{r}-\cfrac{y^2}{r^3}\right),則2ux2+2uy2=φ(x)+φ(x)1r\cfrac{\partial^2u}{\partial x^2}+\cfrac{\partial^2u}{\partial y^2}=\varphi''(x)+\varphi'(x)\cfrac{1}{r},從而得φ(x)+φ(x)1r=0\varphi''(x)+\varphi'(x)\cfrac{1}{r}=0
  這是一個不顯含φ(r)\varphi(r)的可降階方程,令φ(x)=p\varphi'(x)=p,則φ(r)=dpdr\varphi''(r)=\cfrac{\mathrm{d}p}{\mathrm{d}r}。代入上式得dpdr+pr=0p=C1r\cfrac{\mathrm{d}p}{\mathrm{d}r}+\cfrac{p}{r}=0\Rightarrow p=\cfrac{C_1}{r},即φ(r)=C1r\varphi'(r)=\cfrac{C_1}{r},則φ(r)=C1lnr+C2\varphi(r)=C_1\ln r+C_2,故u=C1lnr+C2u=C_1\ln r+C_2。(這道題主要利用了微分方程求解

例29  若對任意t>0t>0,有f(tx,ty)=tnf(x,y)f(tx,ty)=t^nf(x,y),則稱函數f(x,y)f(x,y)nn次齊次函數。試證:若f(x,y)f(x,y)可微,則f(x,y)f(x,y)nn次齊次函數的充要條件是xfx+yfy=nf(x,y)x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}=nf(x,y)

  必要性:由於f(x,y)f(x,y)nn次齊次方程,則對任意t>0t>0,有f(tx,ty)=tnf(x,y)f(tx,ty)=t^nf(x,y)。該式兩端對tt求導得xf1(tx,ty)+yf2(tx,ty)=ntn1f(x,y)xf'_1(tx,ty)+yf'_2(tx,ty)=nt^{n-1}f(x,y)。令t=1t=1xf1(tx,ty)+yf2(tx,ty)=nf(x,y)xf'_1(tx,ty)+yf'_2(tx,ty)=nf(x,y),即有xfx+yfy=nf(x,y)x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}=nf(x,y)
  充分性:令F(t)=f(tx,ty)(t>0)F(t)=f(tx,ty)(t>0),則dFdt=xfx+yfy\cfrac{\mathrm{d}F}{\mathrm{d}t}=x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y},兩邊乘以tttdFdt=txfx+tyfy=nf(tx,ty)=nF(t)t\cfrac{\mathrm{d}F}{\mathrm{d}t}=tx\cfrac{\partial f}{\partial x}+ty\cfrac{\partial f}{\partial y}=nf(tx,ty)=nF(t)。於是dFF=ntdt\cfrac{\mathrm{d}F}{F}=\cfrac{n}{t}\mathrm{d}t,解得F(t)=CtnF(t)=Ct^n。令t=1t=1得,F(1)=CF(1)=C,而由F(t)=f(tx,ty)F(t)=f(tx,ty)F(1,1)=f(x,y)F(1,1)=f(x,y),則C=f(x,y)C=f(x,y)。於是F(t)=tnf(x,y)F(t)=t^nf(x,y),即f(tx,ty)=tnf(x,y)f(tx,ty)=t^nf(x,y)。(這道題主要利用了多元函數求導求解

例36  設f(x,y)f(x,y)有二階連續偏導數,且fy0f'_y\ne0,證明:對任給的常數CCf(x,y)=Cf(x,y)=C爲一條直線的充要條件是f22f11+2f1f2f12+f12f22=0f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}=0

  設f(x,y)=Cf(x,y)=C確定的隱函數爲y=y(x)y=y(x),等式f(x,y)=Cf(x,y)=C兩端對xx求導得f1+f2dydx=0dydx=f1f2f'_1+f'_2\cfrac{\mathrm{d}y}{\mathrm{d}x}=0\Rightarrow\cfrac{\mathrm{d}y}{\mathrm{d}x}=-\cfrac{f'_1}{f_2'}。從而有
d2ydx2=ddx(f1f2)=(f11+f12dydx)f2(f21+f22dydx)f1f22=f22f11+2f1f2f12+f12f22f23 \begin{aligned} \cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}&=-\cfrac{\mathrm{d}}{\mathrm{d}x}\left(\cfrac{f'_1}{f_2'}\right)\\ &=-\cfrac{\left(f''_{11}+f''_{12}\cfrac{\mathrm{d}y}{\mathrm{d}x}\right)f'_2-\left(f''_{21}+f''_{22}\cfrac{\mathrm{d}y}{\mathrm{d}x}\right)f'_1}{f'^2_2}\\ &=-\cfrac{f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}}{f'^3_2} \end{aligned}
  必要性:若f(x,y)=Cf(x,y)=C是一條直線,則由f(x,y)=Cf(x,y)=C所確定的函數y=y(x)y=y(x)應爲線性函數(即y=ax+by=ax+b),則d2ydx2=0\cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}=0,從而有f22f11+2f1f2f12+f12f22=0f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}=0
  充分性:若f22f11+2f1f2f12+f12f22=0f'^2_2f''_{11}+2f'_1f'_2f''_{12}+f'^2_1f''_{22}=0,則d2ydx2=0\cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}=0。從而有y=ax+by=ax+b,即f(x,y)=Cf(x,y)=C所確定的隱函數y=y(x)y=y(x)爲線性函數。故f(x,y)=Cf(x,y)=C表示直線。(這道題主要利用了直線函數特徵求解

5.3  極值與最值

例49  求中心在座標原點的橢圓x2+4xy+5y2=1x^2+4xy+5y^2=1的長半軸與短半軸。

  橢圓x2+4xy+5y2=1x^2+4xy+5y^2=1上點(x,y)(x,y)到原點(0,0)(0,0)距離平方d2=f(x,y)=x2+y2d^2=f(x,y)=x^2+y^2。問題歸結爲求f(x,y)=x2+y2f(x,y)=x^2+y^2在條件x2+4xy+5y2=1x^2+4xy+5y^2=1下的最大值和最小值。
  令F(x,y,λ)=x2+y2+λ(x2+4xy+5y21)F(x,y,\lambda)=x^2+y^2+\lambda(x^2+4xy+5y^2-1),則
{Fx=2x+λ(2x4y)=0,(1)Fy=2y+λ(4x+10y)=0,(2)Fλ=x2+4xy+5y21,(3) \begin{cases} F_x'=2x+\lambda(2x-4y)=0,&\qquad(1)\\ F_y'=2y+\lambda(-4x+10y)=0,&\qquad(2)\\ F_\lambda'=x^2+4xy+5y^2-1,&\qquad(3) \end{cases}
  (1)(1)式乘x2\cfrac{x}{2}(2)(2)式乘y2\cfrac{y}{2}x2+y2+λ(x2+4xy+5y2)=0x^2+y^2+\lambda(x^2+4xy+5y^2)=0。則x2+y2+λ=0x^2+y^2+\lambda=0,即x2+y2=λx^2+y^2=-\lambda
  由(1)(1)式和(2)(2)式知{(1+λ)x2λy=0,2λ+(1+5λ)y=0,\begin{cases}(1+\lambda)x-2\lambda y=0,\\-2\lambda+(1+5\lambda)y=0,\end{cases}這是一個關於x,yx,y的二元線性齊次方程組,由題意知它有非零解,則1+λ2λ2λ1+5λ=0\begin{vmatrix}1+\lambda&-2\lambda\\-2\lambda&1+5\lambda\end{vmatrix}=0,即λ2+6λ+1=0\lambda^2+6\lambda+1=0,得λ=3±22\lambda=-3\pm2\sqrt{2}
  故長半軸a=3+22=1+2a=\sqrt{3+2\sqrt{2}}=1+\sqrt{2},短半軸a=322=12a=\sqrt{3-2\sqrt{2}}=1-\sqrt{2}。(這道題主要利用了橢圓幾何特點求解

5.4  方向導數與梯度 多元微分在幾何上的應用 泰勒定理

例53  函數z=x2+y2z=\sqrt{x^2+y^2}在點(0,0)(0,0)處(  )
(A)(A)不連續;
(B)(B)偏導數存在;
(C)(C)沿任一方向方向導數存在;
(D)(D)可微。

  由於limx0y0x2+y2=0=z(0,0)\lim\limits_{x\to0 \atop y\to0}\sqrt{x^2+y^2}=0=z(0,0),則在(0,0)(0,0)連續,選項(A)(A)不正確。
  由於zx(0,0)=ddx(z(x,0))x=0=ddx(x)x=0\cfrac{\partial z}{\partial x}\biggm\vert_{(0,0)}=\cfrac{\mathrm{d}}{\mathrm{d}x}{(z(x,0))}\biggm\vert_{x=0}=\cfrac{\mathrm{d}}{\mathrm{d}x}{(|x|)}\biggm\vert_{x=0},而x|x|x=0x=0不可導,則zx(0,0)\cfrac{\partial z}{\partial x}\biggm\vert_{(0,0)}不存在。
  設ll爲從原點引出的射線,其方向餘弦爲cosα,cosβ\cos\alpha,\cos\beta,則
lx(0,0)=limt0+f(tcosα,tcosβ)f(0,0)t=limt0+t2cos2α+t2cos2β0t=1. \begin{aligned} \cfrac{\partial l}{\partial x}\biggm\vert_{(0,0)}&=\lim\limits_{t\to0^+}\cfrac{f(t\cos\alpha,t\cos\beta)-f(0,0)}{t}\\ &=\lim\limits_{t\to0^+}\cfrac{\sqrt{t^2\cos^2\alpha+t^2\cos^2\beta}-0}{t}=1. \end{aligned}
  這說明函數z=x2+y2z=\sqrt{x^2+y^2}在點(0,0)(0,0)沿任一方向的方向導數都存在且爲1,故應選(C)(C)。(這道題主要利用了方向導數的定義求解

例57  設f(x,y)f(x,y)R2\bold{R}^2(全平面)上的一個可微函數,且limρ+(xfx+yfy)=α>0\lim\limits_{\rho\to+\infty}\left(x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}\right)=\alpha>0,其中ρ=x2+y2\rho=\sqrt{x^2+y^2}α\alpha爲常數。試證明f(x,y)f(x,y)R2\bold{R}^2上有最小值。

  因爲limρ+(xfx+yfy)=α>0\lim\limits_{\rho\to+\infty}\left(x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}\right)=\alpha>0,由極限保號性知,存在R>0R>0,當ρR\rho\geqslant R時(即x2+y2R2x^2+y^2\geqslant R^2時)xfx+yfy>0x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}>0。從而有xρfx+yρfy>0\cfrac{x}{\rho}\cfrac{\partial f}{\partial x}+\cfrac{y}{\rho}\cfrac{\partial f}{\partial y}>0。若r\bm{r}用表示點(x,y)(x,y)處極徑方向的方向導數,由(1)(1)式知fr>0\cfrac{\partial f}{\partial r}>0,則f(x,y)f(x,y)在區域x2+y2R2x^2+y^2\geqslant R^2上任一點沿極徑方向爲增函數,由f(x,y)f(x,y)可微性知,f(x,y)f(x,y)連續,則f(x,y)f(x,y)在有界閉域x2+y2R2x^2+y^2\geqslant R^2上有最小值,由於f(x,y)f(x,y)x2+y2R2x^2+y^2\geqslant R^2上任一點沿極徑方向爲增函數,則f(x,y)f(x,y)x2+y2R2x^2+y^2\geqslant R^2上的最小值也是在全平面上的最小值。(這道題主要利用了極限的保號性求解

寫在最後

  如果覺得文章不錯就點個贊吧。另外,如果有不同的觀點,歡迎留言或私信。
   歡迎非商業轉載,轉載請註明出處。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章