具體數學--(無限數列和)

UTF8gbsn

Infinite sum

examples

  1. The infinite sum
    S=1+12+14+18+116+132+...S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...
    is equal to 2, because if we double it we get
    2S=2+1+12+14+18+116+132+...=2+S2S=2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...=2+S

  2. However, if we look at T=1+2+4+8+16+32+...T=1+2+4+8+16+32+..., we will get weird
    result from previous method.

    2T=2+4+8+16+32+...=T12T=2+4+8+16+32+...=T-1

    It means T=1T=-1 which not correct.

In order to avoid such incorrect result, we need a better definition for
kKak\sum_{k\in K}a_k, where KK might be infinite.

Definition

type I kFakA\sum_{k\in F}a_k\leqslant A

If there is a bouding constant A, we define that kKak\sum_{k\in K}a_k to
be the least such A.Otherwise, kKak=\sum_{k\in K}a_k=\infty.

Now we can define

k0xk=limn1xn+11x={1/(1x),(0x<1),x1\sum_{k\geqslant 0}x^k=\lim_{n\rightarrow \infty}\frac{1-x^{n+1}}{1-x}=\left\{ \begin{aligned} 1/(1-x),& (0\leqslant x<1)\\ \infty,&x\geqslant 1 \end{aligned} \right.

However, there still some weird sums such as

k0(1)k=11+11+11+...\sum_{k\geqslant 0}(-1)^k=1-1+1-1+1-1+...

if we group the terms in pairs, we get

(11)+(11)+(11)+...=0+0+0+...=01(11)(11)(11)...=1000...=1\left. \begin{aligned} (1-1)+(1-1)+(1-1)+...=0+0+0+...=0\\ 1-(1-1)-(1-1)-(1-1)-...=1-0-0-0-...=1 \end{aligned} \right.

Although, we have the following fact.
k0(1)k1\sum_{k\geqslant 0}(-1)^k \leqslant 1

Another
example,...+(14)+(13)+(12)+1+12+13+14+......+(-\frac{1}{4})+(-\frac{1}{3})+(-\frac{1}{2})+1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...

+(14+(13+(12+(1)+12)+13)+14)+=1+(14+(13+(12+1+12)+13+14)+15+16)+=1+H2nHn+1,(limx(H2nHn+1)=ln2)\left. \begin{aligned} \cdots+\left(-\frac{1}{4}+\left(-\frac{1}{3}+\left(-\frac{1}{2}+(1)+\frac{1}{2}\right)+\frac{1}{3}\right)+\frac{1}{4}\right)+\cdots&=1\\ \cdots+\left(-\frac{1}{4}+\left(-\frac{1}{3}+\left(-\frac{1}{2}+1+\frac{1}{2}\right)+\frac{1}{3}+\frac{1}{4}\right)+\frac{1}{5}+\frac{1}{6}\right)+\cdots&=1+H_{2n}-H_{n+1},(\lim_{x\rightarrow \infty}(H_{2n}-H_{n+1})=ln2) \end{aligned} \right.

type II

x=x+x,x+=x[x>0],x=x[x<0]x=x^+-x^-,x^+=x[x>0],x^-=-x[x<0]

Our general definition is

kKak=kKak+kKak\sum_{k\in K}a_k=\sum_{k\in K} a_k^+-\sum_{k\in K}a_k^-

Now, let’s define

A+=kKak+,A=kKakA^+=\sum_{k\in K}a_k^+,A^-=\sum_{k\in K}a_k^-

  • if A+A^+ and AA^- are both finite, the sum kKak\sum_{k\in K} a_k is
    said to converge absolutely to the value A=A+AA=A^+-A^-

  • If A+=A^+=\infty but AA^- is finite, the sum kKak\sum_{k\in K}a_k is
    said to diverge to ++\infty

  • If A=A^-=\infty but A+A^+ is finite, the sum kKak\sum_{k\in K}a_k is
    said to diverge to -\infty

  • If A+=A=A^+=A^-=\infty, all things are meaningless.

We also can extend this defintion to complex domain.
kKRak+ikKIak\sum_{k\in K}R_{a_{k}}+i\sum_{k\in K}I_{a_{k}}

If the real and img part are both defined,we say that the complex sum
defined. Otherwise, undefined.

multiple indexs

jJ,kKjaj,k\sum_{j\in J, k\in K_j}a_{j,k} converges absolutely to A, then there
exist complex numbers AjA_j for each jJj\in J such that

  • kKjaj,k\sum_{k\in K_j} a_{j,k} converges absolutely to AjA_j, and

  • jJAj\sum_{j\in J}A_{j} converges absolutely to A.
    加粗樣式

發佈了111 篇原創文章 · 獲贊 11 · 訪問量 1萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章