具體數學--(各種基本和式)

UTF8gbsn

在《具體數學》中第二章第四節主要介紹一些基本的和形式。這一節的內容應該熟記與搞清楚。

common sums

  • jJ,kKajbk=(jJaj)(kKbk)\sum_{j\in J,k\in K}a_{j}b_{k}=(\sum_{j\in J}a_j)(\sum_{k\in K}b_k)

  • mapping

    jJkK(j)aj,k=kKjJ(k)aj,k\sum_{j\in J}\sum_{k\in K(j)}a_{j,k}=\sum_{k\in K^{'}}\sum_{j\in J^{'}(k)}a_{j,k}

  • [1jn][jkn]=[1jkn]=[1kn][1jk][1\leqslant j\leqslant n][j\leqslant k\leqslant n]=[1\leqslant j\leqslant k\leqslant n]=[1\leqslant k\leqslant n][1\leqslant j\leqslant k]

    j=1nk=jnaj,k=1jknaj,k=k=1nj=1kaj,k\sum_{j=1}^{n}\sum_{k=j}^{n}a_{j,k}=\sum_{1\leqslant j\leqslant k\leqslant n}a_{j,k}=\sum_{k=1}^{n}\sum_{j=1}^{k}a_{j,k}

    example 1

    [a1a1a1a2a1a3...a1ana2a1a2a2a2a3...a2ana3a1a3a2a3a3...a3anana1ana2ana3...anan]\left[ \begin{array}{ccccc} a_1a_1 & a_1a_2 & a_1a_3 & ... & a_1a_n \\ a_2a_1 & a_2a_2 & a_2a_3 & ... & a_2a_n \\ a_3a_1 & a_3a_2 & a_3a_3 & ... & a_3a_n \\ \vdots & \vdots & \vdots & & \vdots \\ a_na_1 & a_na_2 & a_na_3 & ... & a_na_n \end{array} \right]

    How about the sum of right upper triangle
    S=1jknajakS_{\lhd}=\sum_{1\leqslant j\leqslant k\leqslant n}a_ja_k

    The question here is how to simplify the formula SS_{\lhd} S+S=1j,knajak+1j=knajak=(1jnaj)2+iknak2\left. \begin{aligned} S_{\rhd}+S_{\lhd} &=\sum_{1 \leqslant j,k\leqslant n}a_ja_k+\sum_{1\leqslant j=k\leqslant n}a_ja_k\\ &=(\sum_{1\leqslant j\leqslant n}a_j)^2+\sum_{i\leqslant k \leqslant n}a_k^2 \end{aligned} \right.

    from
    j=1nk=jnaj,k=1jknaj,k=k=1nj=1kaj,k\sum_{j=1}^{n}\sum_{k=j}^{n}a_{j,k}=\sum_{1\leqslant j\leqslant k\leqslant n}a_{j,k}=\sum_{k=1}^{n}\sum_{j=1}^{k}a_{j,k},
    we can get S=SS_{\rhd}=S_{\lhd}

    at last

    S=12[(1jnaj)2+iknak2]S_{\lhd} = \frac{1}{2}[(\sum_{1\leqslant j\leqslant n}a_j)^2+\sum_{i\leqslant k \leqslant n}a_k^2]

    example 2

    S=1j<kn(akaj)(bkbj)S=\sum_{1\leqslant j <k \leqslant n}(a_k-a_j)(b_k-b_j)

    The question here is how to simplify the formula of SS. Let us look
    at the fact below,

    [1j<kn]+[1k<jk]=[1j,kn][1j=kn][1\leqslant j < k \leqslant n]+[1\leqslant k < j \leqslant k]=[1\leqslant j, k \leqslant n]-[1\leqslant j = k \leqslant n]

    S=1j<kn(akaj)(bkbj)=1k<jn(ajak)(bjbk)S=\sum_{1\leqslant j <k \leqslant n}(a_k-a_j)(b_k-b_j)=\sum_{1\leqslant k <j \leqslant n}(a_j-a_k)(b_j-b_k)

    2S=1j,kn(akaj)(bkbj)1j=kn(akaj)(bkbj)2S=\sum_{1\leqslant j,k\leqslant n}(a_k-a_j)(b_k-b_j)-\sum_{1\leqslant j = k \leqslant n}(a_k-a_j)(b_k-b_j)

    We should aware that the second part of the left equation is zero.

    2S=1j,kn(akaj)(bkbj)2S=\sum_{1\leqslant j,k\leqslant n}(a_k-a_j)(b_k-b_j)

    Let’s expand (akaj)(bkbj)(a_k-a_j)(b_k-b_j) to akbk+ajbjakbjajbka_kb_k+a_jb_j-a_kb_j-a_jb_k.
    It’s obvious that

    1j,knakbk=1j,knajbj,1j,knakaj=1j,knajak\sum_{1\leqslant j,k\leqslant n}a_kb_k=\sum_{1\leqslant j,k\leqslant n}a_jb_j,\sum_{1\leqslant j,k\leqslant n}a_ka_j=\sum_{1\leqslant j,k\leqslant n}a_ja_k

    We should get the formula below

    2S=21j,knakbk21j,knajbk2S=2\sum_{1\leqslant j,k\leqslant n}a_kb_k-2\sum_{1\leqslant j,k\leqslant n}a_jb_k

    Let’s simplify the right part of the upper equation

    • 1j,knakbk=niknakbk\sum_{1\leqslant j,k\leqslant n}a_kb_k = n \sum_{i\leqslant k\leqslant n}a_kb_k

    • 1j,knajbk=(1knak)(1knbk)\sum_{1\leqslant j,k\leqslant n}a_jb_k = (\sum_{1\leqslant k\leqslant n}a_k)(\sum_{1\leqslant k\leqslant n}b_k)

    Finally,

    2S=2niknakbk2(1knak)(1knbk)2S=2n \sum_{i\leqslant k\leqslant n}a_kb_k-2(\sum_{1\leqslant k\leqslant n}a_k)(\sum_{1\leqslant k\leqslant n}b_k)

    Rewrite the upper equation

    (1knak)(1knbk)=nk=1nakbk1j<kn(akaj)(bkbj)(\sum_{1\leqslant k\leqslant n}a_k)(\sum_{1\leqslant k\leqslant n}b_k) = n \sum_{k=1}^{n}a_kb_k-\sum_{1\leqslant j<k\leqslant n}(a_k-a_j)(b_k-b_j)

Chebyshev’s monotonic inequlities

We can go back to equation

(1knak)(1knbk)=nk=1nakbk1j<kn(akaj)(bkbj)(\sum_{1\leqslant k\leqslant n}a_k)(\sum_{1\leqslant k\leqslant n}b_k) = n \sum_{k=1}^{n}a_kb_k-\sum_{1\leqslant j<k\leqslant n}(a_k-a_j)(b_k-b_j)
If a1a2...ana_1\leqslant a_2\leqslant ...\leqslant a_n and
b1b2...bnb_1\leqslant b_2\leqslant ... \leqslant b_n, we can get

(1knak)(1knbk)nk=1nakbk(\sum_{1\leqslant k\leqslant n}a_k)(\sum_{1\leqslant k\leqslant n}b_k)\leqslant n \sum_{k=1}^{n}a_kb_k

If a1a2...ana_1\leqslant a_2\leqslant ...\leqslant a_n and
b1b2...bnb_1\geqslant b_2\geqslant ... \geqslant b_n, we can get

(1knak)(1knbk)nk=1nakbk(\sum_{1\leqslant k\leqslant n}a_k)(\sum_{1\leqslant k\leqslant n}b_k)\leqslant n \sum_{k=1}^{n}a_kb_k

The original Chebyshev’s monotonic inequalities

[(abf(x)dx][abg(x)dx](ba)abf(x)g(x)dx[(\int_{a}^{b}{f(x)dx}][\int_{a}^{b}{g(x)dx}]\leqslant (b-a)\int_{a}^{b}{f(x)g(x)dx}

the condition is that f(x)f(x) and g(x)g(x) are monotonic nodecreasing
functions.

Actually

If a1a2...ana_1\leqslant a_2\leqslant ...\leqslant a_n, the
k=1nakbk\sum_{k=1}^{n}a_kb_k will get the largest value when
b1b2..bnb_1\leqslant b_2\leqslant ..\leqslant b_n, and the
k=1nakbk\sum_{k=1}^{n}a_kb_k will get the smallest value when
b1b2...bnb_1\geqslant b_2\geqslant ...\geqslant b_n

How to proof this simple fact: (Hint1: Draw pictures, Hint2:
Recursive method)

Mapping

f:JKf:J \rightarrow K

jJaf(j)=kKak#f1(k),f1(k)={jf(j)=k}\sum_{j\in J}a_{f(j)}=\sum_{k\in K}a_k \#f^{-1}(k), f^{-1}(k)=\{j|f(j)=k\}

#\# is how many j maps to the same k

example:

Sn=1j<kn1kjS_n=\sum_{1\leqslant j<k\leqslant n}\frac{1}{k-j}

  • method 1 Let’s accumulate jj first.

    Sn=1kn1j<k1kj=1kn1kj<k1j=1kn0<jk11j=1knHk1=0k<nHk\left. \begin{aligned} S_n&=\sum_{1\leqslant k\leqslant n}\sum_{1\leqslant j< k} \frac{1}{k-j}\\ &=\sum_{1\leqslant k\leqslant n} \sum_{1\leqslant k-j<k}\frac{1}{j}\\ &=\sum_{1\leqslant k\leqslant n} \sum_{0<j\leqslant k-1}\frac{1}{j}\\ &=\sum_{1\leqslant k\leqslant n} H_{k-1}\\ &=\sum_{0\leqslant k<n}H_k \end{aligned} \right.

    We cannot get closed form at last.

  • method 2

    Let’s accumulate k first.

    Sn=0j<nHjS_n=\sum_{0\leqslant j<n}H_j

    It is the same as method 1

  • method 3

    Can we map k to k-j?

    Sn=1j<kn1kj=1j<k+jn1k=1kn1jnk1k=1knnkk=1knnk1kn=n1kn1kn=nHnn\left. \begin{aligned} S_n&=\sum_{1\leqslant j<k\leqslant n}\frac{1}{k-j}\\ &=\sum_{1\leqslant j<k+j\leqslant n}\frac{1}{k}\\ &=\sum_{1\leqslant k\leqslant n}\sum_{1\leqslant j\leqslant n-k}\frac{1}{k}\\ &=\sum_{1\leqslant k\leqslant n}\frac{n-k}{k}\\ &=\sum_{1\leqslant k\leqslant n}\frac{n}{k}-\sum_{1\leqslant k\leqslant n}\\ &=n \sum_{1\leqslant k\leqslant n}\frac{1}{k}-n=nH_n-n \end{aligned} \right.

    Three methods have three kinds of direction of sum. (upper and
    down),(left and right) and (diagonal). (k=1k=2k=3k=4j=1111213j=21112j=311j=4)\left( \begin{array}{ccccc} & k=1 & k=2 & k=3 & k=4 \\ j=1 & & \frac{1}{1} & \frac{1}{2} & \frac{1}{3} \\ j=2 & & & \frac{1}{1} & \frac{1}{2} \\ j=3 & & & & \frac{1}{1} \\ j=4 & & & & \end{array} \right)

發佈了111 篇原創文章 · 獲贊 11 · 訪問量 1萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章