rank(A)=rank(A^TA)

UTF8gbsn

本文簡要證明命題rank(AAT)=rank(ATA)=rank(A)rank(\mathbf{AA^T})=rank(\mathbf{A^TA})=rank(\mathbf{A}),
此證明分爲兩步來完成.

rank(AAT)=rank(ATA)rank(\mathbf{AA^T})=rank(\mathbf{A^TA})

  • 首先,C=AAT\mathbf{C}=\mathbf{AA^T}.
    那麼我們可以看到.CT=rank(ATA)\mathbf{C^T}=rank(\mathbf{A^TA}).

  • 根據矩陣轉置不改變矩陣的秩可得.
    rank(AAT)=rank(ATA)rank(\mathbf{AA^T})=rank(\mathbf{A^TA})

接下來證明 rank(ATA)=rank(A)rank(\mathbf{A^TA})=rank(\mathbf{A}).

rank(ATA)=rank(A)rank(\mathbf{A^TA})=rank(\mathbf{A})

本輪的證明分爲兩步走, 先看第一步.

  • Nullspace of AA included by nullspace of ATAA^{T}A.
    x,Ax=0ATAx=0\forall \mathbf{x}, A\mathbf{x}=0 \Rightarrow A^TA\mathbf{x}=0
    which means that Nullspace(A)Nullspace(ATA)Nullspace(A)\subseteq Nullspace(A^TA)

  • Nullspace of ATAA^TA include by nullspace of AA
    x,ATAx=0xTATAx=0Ax=0\forall \mathbf{x}, A^TA\mathbf{x}=0 \Rightarrow \mathbf{x^T}A^{T}A\mathbf{x}=0 \Rightarrow A\mathbf{x}=0
    which means that Nullspace(ATA)Nullspace(A)Nullspace(A^TA)\subseteq Nullspace(A).

  • Finally, we get Nullspace(A)=Nullspace(AAT)Nullspace(A)=Nullspace(AA^T).

再來看第二步.

  • Assuming that AA is a m×nm\times n matrix and we can get that ATAA^TA
    is a n×nn\times n matrix.

  • Now, we have reached the final step.
    rank(A)+rank(Nullspace(A))=nrank(A)+rank(Nullspace(A))=n
    rank(ATA)+rank(Nullspace(ATA))=nrank(A^TA)+rank(Nullspace(A^TA))=n

  • At last, we get rank(A)=rank(ATA)rank(A)=rank(A^TA)

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章