具體數學--(有限微分法)

UTF8gbsn

derivative and difference

  • derivative Df(x)=limh0f(x+h)f(x)hDf(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}

  • difference f(x)=f(x+1)f(x)\triangle f(x) = f(x+1)-f(x)

operator:They operate on functions to give new functions.They are
functions of functions that produce functions.

x to the m falling and x to the m rising

  • x to the m falling

    xm=x(x1)...(xm+1),mZx^{\underline{m}}=x(x-1)...(x-m+1), m\in Z

  • x to the m rising

    xm=x(x+1)...(x+m1),mZx^{\overline{m}}=x(x+1)...(x+m-1), m\in Z

example

  • n!=n(n1)...1=nn=1nn!=n(n-1)...1=n^{\underline{n}}=1^{\overline{n}}

  • (xm)=mxm1\triangle (x^{\underline{m}})=mx^{\underline{m-1}}

important analog

在這裏插入圖片描述

p(x+1)=p(x)p(x+1)=p(x) leads to no change when you apply difference operator.That
is why we should use Cp(x+1)=p(x)C\equiv p(x+1)=p(x) for indefinite sum

在這裏插入圖片描述

An important fact is that

abg(x)δx=k=ab1g(k)=ak<bg(k),(a,bZ,ba)\sum_a^bg(x)\delta x = \sum_{k=a}^{b-1}g(k)=\sum_{a\leqslant k<b}g(k), (a,b\in Z, b\geqslant a)

Now, we will introduce an method which will help us to get closed form
of some sums. The path is

  1. Some sums like the following formula.

    ak<bg(k)=abg(x)δx\sum_{a\leqslant k<b}g(k)=\sum_{a}^{b}g(x)\delta x

  2. If we can find an indefinite sum or anti-difference function f such
    that g(x)=f(x+1)f(x)g(x)=f(x+1)-f(x) we can get closed form of the original
    question directly by indefinite sum
    ak<bg(k)=abg(x)δx=f(b)f(a)\mathbf{\sum_{a\leqslant k<b}g(k)=\sum_{a}^{b}g(x)\delta x=f(b)-f(a)}

We have to complete this method into other defintion regions. such as
b<ab<a

abg(x)δx=f(b)f(a)=(f(a)f(b))=bag(x)δx\sum_a^bg(x)\delta x=f(b)-f(a)=-(f(a)-f(b))=-\sum_b^a g(x)\delta x

It means that

ab+bc=ac\sum_a^b+\sum_b^c=\sum_a^c

the same as

ab+bc=ac\int_a^b+\int_b^c=\int_a^c

Try it

0k<nkm=km+1m+10n=nm+1m+1\mathbf{\sum_{0\leqslant k<n} k^{\underline{m}}=\frac{k^{\underline{m+1}}}{m+1}|_0^n=\frac{n^{\underline{m+1}}}{m+1}}

  1. How to get the closed form of 0k<nk\sum_{0\leqslant k<n}k

    • what is the f(x) when g(x)=xg(x)=x ?

      g(x)=x=x1f(x)=n22g(x)=x=x^{\underline{1}} \Rightarrow f(x)=\frac{n^{\underline{2}}}{2}

    • It means

      0k<nk=n220n=n(n1)/2\sum_{0\leqslant k<n}k = \frac{n^{\underline{2}}}{2}|_0^n=n(n-1)/2

  2. Let’s go to our question mentioned at previous section. How to get
    the closed form of k=0n1k2=0k<nk2\sum_{k=0}^{n-1}k^2=\sum_{0\leqslant k<n}k^2

    what is the g(x)g(x)? It is
    k2=k2+k1f(x)=x33+x22k^2=k^{\underline{2}}+k^{\underline{1}}\Rightarrow f(x)=\frac{x^{\underline{3}}}{3}+\frac{x^{\underline{2}}}{2}

    0k<nk2=n33+n22=13n(n12)(n1)\sum_{0\leqslant k<n}k^2=\frac{n^{\underline{3}}}{3}+\frac{n^{\underline{2}}}{2}=\frac{1}{3}n(n-\frac{1}{2})(n-1)

  3. 0knk3\sum_{0\leqslant k\leqslant n}k^3

    • g(k)=k3+3k2+k1g(k)=k^{\underline{3}}+3k^{\underline{2}}+k^{\underline{1}}

    • f(k)=k44+k3k22f(k)=\frac{k^{\underline{4}}}{4}+k^{\underline{3}}\frac{k^{\underline{2}}}{2}

One more tip.

(x+y)2=x2+2x1y1+y2(x+y)^{\underline{2}}=x^{\underline{2}}+2x^{\underline{1}}y^{\underline{1}}+y^{\underline{2}}

ln(x)

We already have

x3=x(x1)(x2)x2=x(x1)x1=xx0=1\left. \begin{aligned} x^{\underline{3}}&=x(x-1)(x-2)\\ x^{\underline{2}}&=x(x-1)\\ x^{\underline{1}}&=x\\ x^{\underline{0}}&=1 \end{aligned} \right.

What is x1x^{\underline{-1}}?

xm=1(x+1)(x+2)...(x+m),m>0x^{\underline{-m}}=\frac{1}{(x+1)(x+2)...(x+m)}, m>0

Let’s compare

xm+n=xmxnxm+n=xm(xm)n\left. \begin{aligned} x^{m+n}&=x^mx^n\\ x^{\underline{m+n}}&=x^{\underline{m}}(x-m)^{\underline{n}} \end{aligned} \right.

Coming back to
abmmδx=mm+1m+1ab,m1\sum_a^bm^{\underline{m}}\delta x=\frac{m^{\underline{m+1}}}{m+1}|_a^b,m\neq -1

abx1dx=lnxabx1=1x+1=f(x+1)f(x)\left. \begin{aligned} \int_a^bx^{-1}dx&=lnx|_a^b\\ x^{\underline{-1}}&=\frac{1}{x+1}=f(x+1)-f(x) \end{aligned} \right.

It is not hard to see that

f(x)=11+12+...+1xf(x)=\frac{1}{1}+\frac{1}{2}+...+\frac{1}{x}

It means that HxH_x is the discrete analog of the continuous lnxlnx

abxmδx={xm+1m+1ab,m1Hxab,m=1\sum_a^b x^{\underline{m}}\delta x= \left\{ \begin{aligned} \frac{x^{\underline{m+1}}}{m+1}|_a^b, m\neq 1\\ H_x|_a^b,m=-1 \end{aligned} \right.

exe^x

D(ex)=exD(e^x)=e^x
f(x)=f(x+1)f(x)=f(x)f(x+1)=2f(x)\triangle f(x)=f(x+1)-f(x)=f(x) \Leftrightarrow f(x+1)=2f(x)

It means that f(x)=2xf(x)=2^x. 2x2^x is the discrete analog of continuous
exe^x.

Let’s look at a more general case
(cx)=cx+1cx=(c1)cx\triangle(c^x)=c^{x+1}-c^x=(c-1)c^x

ak<bck=abcxδx=cxc1ab=cbcac1,c1\sum_{a\leqslant k<b}c^k=\sum_a^bc^x\delta x=\frac{c^x}{c-1}|_a^b=\frac{c^b-c^a}{c-1}, c\neq 1

conclusion

在這裏插入圖片描述

More analog

Unfortunately, there is no nice chain rule for
f(g(x))\triangle f(g(x)).However, there is a nice analog rule for multiple
rule.

D(uv)=uDv+vDuD(uv)=uDv+vDu

(uv)=uv+v(x+1)u=uv+E(v)u\triangle (uv)=u\triangle v+v(x+1)\triangle u=u\triangle v+E(v)\triangle u

E(f(x))=f(x+1)E(f(x))=f(x+1)

uv=uvEvu\sum u\triangle v=uv-\sum Ev\triangle u

Example

  1. x2xδx=x2x2x+1δx=x2x2x+1+C\left. \begin{aligned} \sum x2^x \delta x&=x2^x-\sum 2^{x+1}\delta x\\ &=x2^x-2^{x+1}+C \end{aligned} \right.

    k=0nk2k=0n+1x2xδx=x2x2x+10n+1=(n1)2n+1+2\left. \begin{aligned} \sum_{k=0}^{n}k2^k&=\sum_{0}^{n+1}x2^x \delta x\\ &=x2^x-2^{x+1}|_0^{n+1}\\ &=(n-1)2^{n+1}+2 \end{aligned} \right.

  2. xHxδx=x22Hx(x+1)22x1δx=x22Hx12x1δx=x22Hxx24+C\left. \begin{aligned} \sum xH_x\delta x&=\frac{x^2}{2}H_x-\sum \frac{(x+1)^{\underline{2}}}{2}x^{\underline{-1}}\delta x\\ &=\frac{x^{\underline{2}}}{2}H_x-\frac{1}{2}\sum x^{\underline{-1}}\delta x\\ &=\frac{x^{\underline{2}}}{2}H_x-\frac{x^{\underline{2}}}{4}+C \end{aligned} \right.

    0k<nkHk=0nxHxδx=n22(Hn12)\sum_{0\leqslant k<n} kH_k=\sum_0^nxH_x\delta x=\frac{n^{\underline{2}}}{2}(H_n-\frac{1}{2})

發佈了111 篇原創文章 · 獲贊 11 · 訪問量 1萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章