高數打卡07

計算下列對座標的曲線積分:
(1)Lxydx,(1)\oint_{L}xydx,其中LL爲圓周(xa)2+y2=a2(a>0)(x-a)^2+y^2=a^2(a>0)及x軸所圍成的在第一象限內的區域的整個邊界(按逆時針方向繞行);
(2)Γdxdy+ydz,(2)\oint_{\Gamma}dx-dy+ydz,
其中Γ\Gamma爲有向折線ABCA,ABCA,這裏的A,B,CA,B,C依次爲點(1,0,0),(0,1,0),(0,0,1);(1,0,0),(0,1,0),(0,0,1);
(3)L(x+y)dx+(yx)dy,(3)\int_{L}(x+y)dx+(y-x)dy,其中LL是曲線x=2t2+t+1,y=t2+1,x=2t^2+t+1,y=t^2+1,從點(1,1)(1,1)到點(4,2)(4,2)的一段弧.

解:
(1)L(1)LL1()L_1(圓弧)L2()L_2(直線段)組成.L1L_1爲有向半圓弧:
{x=a+acost,y=asint,\left\{\begin{aligned} &x=a+acost,\\ &y=asint, \end{aligned}\right.
tt從0變到π;\pi;
L2L_2爲有向線段y=0,xy=0,x00變到2a.2a.於是
Lxydx=L1xydx+L2xydx=0πa(1+cost)asint(asint)dt+0=a3(0πsin2tdt+0πsin2tcostdt)=a3(π2+0)=π2a3.\oint_{L}xydx=\int_{L_1}xydx+\int_{L_2}xydx\\ =\int_{0}^{\pi}a(1+cost) \cdot asint \cdot (-asint)dt+0\\ =-a^3(\int_{0}^{\pi}sin^2tdt+\int_{0}^{\pi}sin^2tcostdt)\\ =-a^3(\frac{\pi}{2}+0)=-\frac{\pi}{2}a^3.\\
(2)(2)Γ\Gamma由有向線段AB,BC,CA依次連接而成,其中
AB:x=1t,y=t,z=0,t01;BC:x=0,y=1t,z=t,t01;CA:x=t,y=0,z=1t,t01:AB:x=1-t,y=t,z=0,t從0變到1;\\ BC:x=0,y=1-t,z=t,t從0變到1;\\ CA:x=t,y=0,z=1-t,t從0變到1:\\
ABdxdy+ydz=01[(1)1+0]dt=2,BCdxdy+ydz=01[0(1)+(1t)1]dt=01(2t)dt=32,CAdxdy+ydz=01(10+0)dt=1,\int_{AB}dx-dy+ydz=\int_{0}^{1}[(-1)-1+0]dt=-2,\\ \int_{BC}dx-dy+ydz=\int_{0}^{1}[0-(-1)+(1-t) \cdot 1]dt=\int_{0}^{1}(2-t)dt=\frac{3}{2},\\ \int_{CA}dx-dy+ydz=\int_{0}^{1}(1-0+0)dt=1,
因此
Γdxdy+ydz=2+32+1=12.\oint_{\Gamma}dx-dy+ydz=-2+\frac{3}{2}+1=\frac{1}{2}.
(3)(3){2t2+t+1=1,t2+1=1\left\{\begin{aligned} &2t^2+t+1=1,\\ &t^2+1=1\\ \end{aligned} \right.
可得t=0;t=0;
{2t2+t+1=4,t2+1=2\left\{\begin{aligned} &2t^2+t+1=4,\\ &t^2+1=2\\ \end{aligned} \right.
可得t=1;t=1;
因此
L(x+y)dx+(yx)dy=01[2t2+t+1+t2+1)(4t+1)+(t2+12t2t1)2t]dt=01(10t3+5t2+9t+2)dt=323.\int_{L}(x+y)dx+(y-x)dy=\int_{0}^{1}[2t^2+t+1+t^2+1) \cdot (4t+1)+(t^2+1-2t^2-t-1) \cdot 2t]dt \\ =\int_{0}^{1}(10t^3+5t^2+9t+2)dt=\frac{32}{3}.

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章