張宇1000題高等數學 第十三章 多元函數微分學

目錄

AA

5.利用變量代換u=x,v=yxu=x,v=\cfrac{y}{x},可將方程xzx+yzy=zx\cfrac{\partial z}{\partial x}+y\cfrac{\partial z}{\partial y}=z化爲新方程(  )。
(A)uzu=z;(A)u\cfrac{\partial z}{\partial u}=z;
(B)vzv=z;(B)v\cfrac{\partial z}{\partial v}=z;
(C)uzv=z;(C)u\cfrac{\partial z}{\partial v}=z;
(D)vzu=z.(D)v\cfrac{\partial z}{\partial u}=z.

  由複合函數微分法則可得zx=zu1+zv(yx2),zy=1xzv\cfrac{\partial z}{\partial x}=\cfrac{\partial z}{\partial u}\cdot1+\cfrac{\partial z}{\partial v}\cdot\left(-\cfrac{y}{x^2}\right),\cfrac{\partial z}{\partial y}=\cfrac{1}{x}\cdot\cfrac{\partial z}{\partial v},於是xzx+yzy=xzuyxzv+yxzv=xzu=zx\cfrac{\partial z}{\partial x}+y\cfrac{\partial z}{\partial y}=x\cdot\cfrac{\partial z}{\partial u}-\cfrac{y}{x}\cdot\cfrac{\partial z}{\partial v}+\cfrac{y}{x}\cdot\cfrac{\partial z}{\partial v}=x\cfrac{\partial z}{\partial u}=z
  又u=xu=x,故新方程爲uzu=zu\cfrac{\partial z}{\partial u}=z。(這道題主要利用了複合函數求導法則求解

14.設函數z=z(x,y)z=z(x,y)G(x,y,z)=F(xy,yz)=0G(x,y,z)=F(xy,yz)=0確定,其中FF爲可微函數,且Gz0G_z'\ne0,求xzxyzyx\cfrac{\partial z}{\partial x}-y\cfrac{\partial z}{\partial y}

  由於F(xy,yz)=0F(xy,yz)=0,可得Gx=F1y,Gy=F1x+F2y,Gx=F2yG'_x=F'_1\cdot y,G'_y=F'_1\cdot x+F'_2\cdot y,G'_x=F'_2\cdot y。又zx=GxGz=F1F2,zy=GyGz=F1x+F2yF2y\cfrac{\partial z}{\partial x}=-\cfrac{G'_x}{G'_z}=-\cfrac{F'_1}{F'_2},\cfrac{\partial z}{\partial y}=-\cfrac{G'_y}{G'_z}=-\cfrac{F'_1\cdot x+F'_2\cdot y}{F'_2\cdot y},因此xzxyzy=zx\cfrac{\partial z}{\partial x}-y\cfrac{\partial z}{\partial y}=z。(這道題主要利用了隱函數求導求解

BB

3.設y=f(x,t)y=f(x,t),而是tt由方程F(x,y,t)=0F(x,y,t)=0所確定的x,yx,y的函數,其中f,Ff,F均具有一階連續偏導數,則dydx=\cfrac{\mathrm{d}y}{\mathrm{d}x}=(  )。
(A)fxFt+ftFxFt;(A)\cfrac{f'_xF'_t+f'_tF'_x}{F'_t};
(B)fxFtftFxFt;(B)\cfrac{f'_xF'_t-f'_tF'_x}{F'_t};
(C)fxFt+ftFxftFy+Ft;(C)\cfrac{f'_xF'_t+f'_tF'_x}{f'_tF'_y+F'_t};
(D)fxFtftFxftFy+Ft.(D)\cfrac{f'_xF'_t-f'_tF'_x}{f'_tF'_y+F'_t}.

  方程兩邊求全微分,得Fxdx+Fydy+Ftdt=0F'_x\mathrm{d}x+F'_y\mathrm{d}y+F'_t\mathrm{d}t=0,則dt=FxFtdxFyFtdy\mathrm{d}t=-\cfrac{F'_x}{F'_t}\mathrm{d}x-\cfrac{F'_y}{F'_t}\mathrm{d}y,又dy=fxdx+ftdt=fxdxft(FxFtdx+FyFtdy)\mathrm{d}y=f'_x\mathrm{d}x+f'_t\mathrm{d}t=f'_x\mathrm{d}x-f'_t\left(\cfrac{F'_x}{F'_t}\mathrm{d}x+\cfrac{F'_y}{F'_t}\mathrm{d}y\right),解得dydx=fxFtftFxftFy+Ft\cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{f'_xF'_t-f'_tF'_x}{f'_tF'_y+F'_t},故選(D)(D)。(這道題主要利用了隱函數求導求解

4.設函數u=u(x,y)u=u(x,y)滿足2ux2=2uy2\cfrac{\partial^2u}{\partial x^2}=\cfrac{\partial^2u}{\partial y^2}u(x,2x)=x,u1(x,2x)=x2u(x,2x)=x,u'_1(x,2x)=x^2,其中uu具有二階連續偏導數,則u11(x,2x)=u''_{11}(x,2x)=(  )。
(A)43x;(A)\cfrac{4}{3}x;
(B)43x;(B)-\cfrac{4}{3}x;
(C)34x;(C)\cfrac{3}{4}x;
(D)34x.(D)-\cfrac{3}{4}x.

  等式u(x,2x)=xu(x,2x)=x兩邊對xx求導得u1+2u2=1u'_1+2u'_2=1,兩邊再對xx求導得u11+2u12+2u21+4u22=0u''_{11}+2u''_{12}+2u''_{21}+4u''_{22}=0,等式u1(x,2x)=x2u'_1(x,2x)=x^2兩邊對xx求導得u11+2u12=2xu''_{11}+2u''_{12}=2x,代入得u11(x,2x)=43xu''_{11}(x,2x)=-\cfrac{4}{3}x。(這道題主要利用了方程求導法則求解

32.設f(x,y)f(x,y)在點O(0,0)O(0,0)處的某鄰域UU內連續,且lim(x,y)(0,0)f(x,y)xyx2+y2=a\lim\limits_{(x,y)\to(0,0)}\cfrac{f(x,y)-xy}{x^2+y^2}=a,常數a>12a>\cfrac{1}{2}。討論f(0,0)f(0,0)是否爲f(x,y)f(x,y)的極值?若是極值,判斷是極大值還是極小值?

  由lim(x,y)(0,0)f(x,y)xyx2+y2=a\lim\limits_{(x,y)\to(0,0)}\cfrac{f(x,y)-xy}{x^2+y^2}=a,知f(x,y)xyx2+y2=a+α\cfrac{f(x,y)-xy}{x^2+y^2}=a+\alpha,其中lim(x,y)(0,0)α=0\lim\limits_{(x,y)\to(0,0)}\alpha=0
  再令a=12+b,b>0a=\cfrac{1}{2}+b,b>0,於是上式可改寫爲f(x,y)=xy+(12+b+α)(x2+y2)f(x,y)=xy+\left(\cfrac{1}{2}+b+\alpha\right)(x^2+y^2)
  由f(x,y)f(x,y)的連續性,有f(0,0)=lim(x,y)(0,0)f(x,y)=0f(0,0)=\lim\limits_{(x,y)\to(0,0)}f(x,y)=0
  另一方面,由lim(x,y)(0,0)α=0\lim\limits_{(x,y)\to(0,0)}\alpha=0知,存在點(0,0)(0,0)處的去心鄰域U˚δ(0)\mathring{U}_\delta(0),當(x,y)U˚δ(0)(x,y)\in\mathring{U}_\delta(0)時,有α<b2|\alpha|<\cfrac{b}{2},故在U˚δ(0)\mathring{U}_\delta(0)內,f(x,y)>0f(x,y)>0,所以f(0,0)f(0,0)f(x,y)f(x,y)的極小值。(這道題主要利用了極限定義求解

39.求正數a,ba,b的值,使得橢圓x2a2+y2b2=1\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1包含圓x2+y2=2yx^2+y^2=2y,且面積最小。

  如下圖,由於所求橢圓必須包含圓x2+y2=2yx^2+y^2=2y,並與之相切。

在這裏插入圖片描述

  故在橢圓上的任意一點(x,y)(x,y)處滿足f(x,y)=x2+(y1)21f(x,y)=x^2+(y-1)^2\geqslant1。這就是說函數f(x,y)=x2+(y1)2f(x,y)=x^2+(y-1)^2在橢圓方程x2a2+y2b2=1\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1的約束下取得最小值11。於是考慮條件極值問題:
{min{f(x,y)}=1,x2a2+y2b2=1. \begin{cases} \min\{f(x,y)\}=1,\\ \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1. \end{cases}
  構造拉格朗日函數L(x,y,λ)=x2+(y1)2+λ(x2a2+y2b21)L(x,y,\lambda)=x^2+(y-1)^2+\lambda\left(\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}-1\right),令
{Lx=2x+2λxa2=0,(1)Ly=2(y1)+2λyb2=0,(2)Lλ=x2a2+y2b21=0.(3) \begin{cases} L'_x=2x+\cfrac{2\lambda x}{a^2}=0,&\qquad(1)\\ L'_y=2(y-1)+\cfrac{2\lambda y}{b^2}=0,&\qquad(2)\\ L'_\lambda=\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}-1=0.&\qquad(3) \end{cases}
  若x0x\ne0,則由可解得λ=a2\lambda=-a^2,再由(2)(2)可解得y0=b2b2a2y_0=\cfrac{b^2}{b^2-a^2};並由(3)(3)解得x02=a2[1b2(b2a2)2]x_0^2=a^2\left[1-\cfrac{b^2}{(b^2-a^2)^2}\right]
  由f(x0,y0)=1f(x_0,y_0)=1推出a2[1b2(b2a2)2]+b4(b2a2)2=1a^2\left[1-\cfrac{b^2}{(b^2-a^2)^2}\right]+\cfrac{b^4}{(b^2-a^2)^2}=1,從而a2b2a4b2=0a^2b^2-a^4-b^2=0b2a2=0b^2-a^2=0捨去)。
  爲了求出a,ba,b的值,使與之對應的橢圓面積πab\pi ab達到最小值,考察條件極值問題
{min{ab},a2b2a4b2=0. \begin{cases} \min\{ab\},\\ a^2b^2-a^4-b^2=0. \end{cases}
  構造拉格朗日函數H(a,b,η)=ab+η(a2b2a4b2)H(a,b,\eta)=ab+\eta(a^2b^2-a^4-b^2)。令
{Ha=b+2ab2η4a3η=0,(4)Hb=a+2a2bη2bη=0,(5)Hη=a2b2a4b2,(6) \begin{cases} H'_a=b+2ab^2\eta-4a^3\eta=0,&\qquad(4)\\ H'_b=a+2a^2b\eta-2b\eta=0,&\qquad(5)\\ H'_\eta=a^2b^2-a^4-b^2,&\qquad(6)\\ \end{cases}
  由(4),(5)(4),(5)b4a32ab2=a2b2a2b\cfrac{b}{4a^3-2ab^2}=\cfrac{a}{2b-2a^2b},從而b2=2a4b^2=2a^4。將此式代入a2b2a4b2=0a^2b^2-a^4-b^2=0,得到2a63a4=02a^6-3a^4=0,於是a2=32,a=62,b=322a^2=\cfrac{3}{2},a=\cfrac{\sqrt{6}}{2},b=\cfrac{3\sqrt{2}}{2},此時橢圓面積A1=πab=33π2A_1=\pi ab=\cfrac{3\sqrt{3}\pi}{2}
  若x=0x=0,則由x2a2+y2b2=1\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1解得y=by=b。將x=0,y=bx=0,y=b代入x2+(y1)2=1x^2+(y-1)^2=1,於是b=2b=2
  橢圓x2a2+y24=1\cfrac{x^2}{a^2}+\cfrac{y^2}{4}=1(0,2)(0,2)有水平切線,並且曲率和圓x2+(y1)2=1x^2+(y-1)^2=1的曲率相同,所以y(0)=0,y(0)=1y'(0)=0,y''(0)=-1
  但是,由方程x2a2+y24=1\cfrac{x^2}{a^2}+\cfrac{y^2}{4}=1可以計算在該點的y(0)=0,y(0)=2a2y'(0)=0,y''(0)=-\cfrac{2}{a^2},所以2a2=1\cfrac{2}{a^2}=1,即a=2a=\sqrt{2}。此時,橢圓的面積A2=22>33π2=A1A_2=2\sqrt{2}>\cfrac{3\sqrt{3}\pi}{2}=A_1
  綜上所述,當a=62,b=322a=\cfrac{\sqrt{6}}{2},b=\cfrac{3\sqrt{2}}{2}時,橢圓面積最小。(這道題主要利用了拉格朗日函數求解

CC

3.設函數f(x,y)f(x,y)及它的二階偏導數在全平面連續,且f(0,0)=0,fx2xy,fy2xyf(0,0)=0,\left|\cfrac{\partial f}{\partial x}\right|\leqslant2|x-y|,\left|\cfrac{\partial f}{\partial y}\right|\leqslant2|x-y|。求證:f(5,4)1|f(5,4)|\leqslant1

  因d[f(x,y)]=fxdx+fydy\mathrm{d}[f(x,y)]=\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y,因此曲線積分Lfxdx+fydy\displaystyle\int_L\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y與路徑無關。
  設O(0,0),A(4,4),B(5,4)O(0,0),A(4,4),B(5,4),由條件fx2xy,fy2xy\left|\cfrac{\partial f}{\partial x}\right|\leqslant2|x-y|,\left|\cfrac{\partial f}{\partial y}\right|\leqslant2|x-y|,知在直線OA:y=xOA:y=x上,fx=fy=0\cfrac{\partial f}{\partial x}=\cfrac{\partial f}{\partial y}=0,所以
f(5,4)f(0,0)=(0,0)(5,4)d[f(x,y)]=(0,0)(5,4)fxdx+fydy=OAfxdx+fydy+ABfxdx+fydy=45f(x,4)xdx. \begin{aligned} f(5,4)-f(0,0)&=\displaystyle\int^{(5,4)}_{(0,0)}\mathrm{d}[f(x,y)]=\displaystyle\int^{(5,4)}_{(0,0)}\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y\\ &=\displaystyle\int_{\overline{OA}}\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y+\displaystyle\int_{\overline{AB}}\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y=\displaystyle\int^5_4\cfrac{\partial f(x,4)}{\partial x}\mathrm{d}x. \end{aligned}
  又因f(0,0)=0f(0,0)=0,故f(5,4)=45f(x,4)xdx452x4dx=1|f(5,4)|=\left|\displaystyle\int^5_4\cfrac{\partial f(x,4)}{\partial x}\mathrm{d}x\right|\leqslant\displaystyle\int^5_42|x-4|\mathrm{d}x=1。(這道題主要利用了第二型曲線積分求解

5.設u(x,y)u(x,y)具有二階連續偏導數,證明無零值的函數u(x,y)u(x,y)可分離變量(即u(x,y)=f(x)g(y)u(x,y)=f(x)g(y))的充分必要條件是u2uxy=uxuyu\cfrac{\partial^2u}{\partial x\partial y}=\cfrac{\partial u}{\partial x}\cfrac{\partial u}{\partial y}

  必要性:設u(x,y)=f(x)g(y)u(x,y)=f(x)g(y),則ux=f(x)g(y),uy=f(x)g(y),2uxy=f(x)g(y)\cfrac{\partial u}{\partial x}=f'(x)g(y),\cfrac{\partial u}{\partial y}=f(x)g'(y),\cfrac{\partial^2u}{\partial x\partial y}=f'(x)g'(y),因此u2uxy=f(x)g(y)f(x)g(y)=uxuyu\cfrac{\partial^2u}{\partial x\partial y}=f(x)g(y)f'(x)g'(y)=\cfrac{\partial u}{\partial x}\cfrac{\partial u}{\partial y}
  充分性:因爲2uxy=y(ux)\cfrac{\partial^2u}{\partial x\partial y}=\cfrac{\partial}{\partial y}\left(\cfrac{\partial u}{\partial x}\right),所以有u(ux)y(ux)(uy)=0u(u'_x)'_y-(u'_x)(u'_y)=0,又u(x,y)u(x,y)無零值,故可得(uxu)y=0\left(\cfrac{u'_x}{u}\right)'_y=0,兩邊關於yy積分得uxu=c1(x)\cfrac{u'_x}{u}=c_1(x),其中c1(x)c_1(x)xx的任意可微函數,即有(lnu)x=c1(x)(\ln|u|)'_x=c_1(x),再對xx積分得lnu=c1(x)dx+c2(y)\ln|u|=\displaystyle\int c_1(x)\mathrm{d}x+c_2(y),其中c2(y)c_2(y)yy的任意可微函數。故u(x,y)=±ec1(x)dxec2(y)=f(x)g(y)u(x,y)=\pm e^{\int c_1(x)\mathrm{d}x}e^{c_2(y)}=f(x)g(y)。(這道題主要利用了方程求導求解

寫在最後

  如果覺得文章不錯就點個贊吧。另外,如果有不同的觀點,歡迎留言或私信。
   歡迎非商業轉載,轉載請註明出處。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章