張宇1000題高等數學 第十八章 多元函數積分學(二)

目錄

CC

1.設y=f(x,y)y'=f(x,y)是一條簡單封閉曲線LL(取正向),f(x,y)0f(x,y)\ne0,其所圍成區域記爲DDDD的面積爲11,則I=Lxf(x,y)dxyf(x,y)dy=I=\displaystyle\oint_Lxf(x,y)\mathrm{d}x-\cfrac{y}{f(x,y)}\mathrm{d}y=______。

  將邊界方程代入被積函數,於是有
I=Lxydxyydy=Lxdyydx=D(1+1)dσ=2. \begin{aligned} I&=\displaystyle\oint_Lxy'\mathrm{d}x-\cfrac{y}{y'}\mathrm{d}y=\displaystyle\oint_Lx\mathrm{d}y-y\mathrm{d}x\\ &=\displaystyle\iint\limits_{D}(1+1)\mathrm{d}\sigma=2. \end{aligned}

2.設f(x)f(x)[0,1][0,1]上連續,證明:01dx0xdy0yf(x)f(y)f(z)dz=13![01f(t)dt]\displaystyle\int^1_0\mathrm{d}x\displaystyle\int^x_0\mathrm{d}y\displaystyle\int^y_0f(x)f(y)f(z)\mathrm{d}z=\cfrac{1}{3!}\left[\displaystyle\int^1_0f(t)\mathrm{d}t\right]

  因爲f(x)f(x)[0,1][0,1]上連續,所以在[0,1][0,1]上存在原函數。
  設F(t)=f(t)(t[0,1])F'(t)=f(t)(t\in[0,1]),則
01dx0xdy0yf(x)f(y)f(z)dz=01f(x)dx0xf(y)[F(y)F(0)]dy=01f(x)dx0x[F(y)F(0)]d[F(y)F(0)]=01f(x)[F(y)F(0)]220xdx=1201f(x)[F(x)F(0)]2dx=1201f(x)[F(x)F(0)]2d[F(x)F(0)]=13![F(x)F(0)]301=13![F(1)F(0)]3=13![01f(t)dt]. \begin{aligned} \displaystyle\int^1_0\mathrm{d}x\displaystyle\int^x_0\mathrm{d}y\displaystyle\int^y_0f(x)f(y)f(z)\mathrm{d}z&=\displaystyle\int^1_0f(x)\mathrm{d}x\displaystyle\int^x_0f(y)[F(y)-F(0)]\mathrm{d}y\\ &=\displaystyle\int^1_0f(x)\mathrm{d}x\displaystyle\int^x_0[F(y)-F(0)]\mathrm{d}[F(y)-F(0)]\\ &=\displaystyle\int^1_0f(x)\cfrac{[F(y)-F(0)]^2}{2}\biggm\vert^x_0\mathrm{d}x\\ &=\cfrac{1}{2}\displaystyle\int^1_0f(x)[F(x)-F(0)]^2\mathrm{d}x\\ &=\cfrac{1}{2}\displaystyle\int^1_0f(x)[F(x)-F(0)]^2\mathrm{d}[F(x)-F(0)]\\ &=\cfrac{1}{3!}[F(x)-F(0)]^3\biggm\vert^1_0=\cfrac{1}{3!}[F(1)-F(0)]^3\\ &=\cfrac{1}{3!}\left[\displaystyle\int^1_0f(t)\mathrm{d}t\right]. \end{aligned}

11.設f(x,y)f(x,y)在全平面有連續偏導數,曲線積分Lf(x,y)dx+xcosydy\displaystyle\int_Lf(x,y)\mathrm{d}x+x\cos y\mathrm{d}y在全平面與路徑無關,且(0,0)(t,t2)f(x,y)dx+xcosydy=t2\displaystyle\int^{(t,t^2)}_{(0,0)}f(x,y)\mathrm{d}x+x\cos y\mathrm{d}y=t^2,求f(x,y)f(x,y)

  Lf(x,y)dx+xcosydy\displaystyle\int_Lf(x,y)\mathrm{d}x+x\cos y\mathrm{d}y在全平面與路徑無關x(xcosy)=fy\Leftrightarrow\cfrac{\partial}{\partial x}(x\cos y)=\cfrac{\partial f}{\partial y},即fy=cosy\cfrac{\partial f}{\partial y}=\cos y,積分得f(x,y)=siny+Cf(x,y)=\sin y+C
  因
f(x,y)dx+xcosydy=sinydx+C(x)dx+xcosydy=sinydx+xdsiny+d[0xC(s)ds]=d[xsiny+0xC(s)ds], \begin{aligned} f(x,y)\mathrm{d}x+x\cos y\mathrm{d}y&=\sin y\mathrm{d}x+C(x)\mathrm{d}x+x\cos y\mathrm{d}y\\ &=\sin y\mathrm{d}x+x\mathrm{d}\sin y+\mathrm{d}\left[\displaystyle\int^x_0C(s)\mathrm{d}s\right]=\mathrm{d}\left[x\sin y+\displaystyle\int^x_0C(s)\mathrm{d}s\right], \end{aligned}
  則有[xsiny+0xC(s)ds](0,0)(t,t2)=t2\left[x\sin y+\displaystyle\int^x_0C(s)\mathrm{d}s\right]\biggm\vert^{(t,t^2)}_{(0,0)}=t^2,即tsint2+0xC(s)ds=t2sint2+2t2cost2+C(t)=2tt\sin t^2+\displaystyle\int^x_0C(s)\mathrm{d}s=t^2\Rightarrow\sin t^2+2t^2\cos t^2+C(t)=2t,因此f(x,y)=siny+2xsinx22x2cosx2f(x,y)=\sin y+2x-\sin x^2-2x^2\cos x^2

14.設f(x),g(x)f(x),g(x)二階導數連續,且f(0)=2,g(0)=0f(0)=-2,g(0)=0。對於任意一條逐段光滑的封閉曲線LL,有L2[xf(x)+g(y)]dx+[x2g(y)+2xy2+2xf(y)]dy=0\displaystyle\oint_L2[xf(x)+g(y)]\mathrm{d}x+[x^2g(y)+2xy^2+2xf(y)]\mathrm{d}y=0

(1)求f(x),g(x)f(x),g(x)

  由曲線積分與路徑無關,有Py=Qx\cfrac{\partial P}{\partial y}=\cfrac{\partial Q}{\partial x},即2xg(y)+2y2+2f(y)=2xf(y)+2g(y)2xg(y)+2y^2+2f(y)=2xf'(y)+2g'(y),也即2x[g(y)f(y)]=2y22f(y)+2g(y)2x[g(y)-f'(y)]=-2y^2-2f(y)+2g'(y),比較等式兩邊xx的同冪次係數,有
{g(y)f(y)=0,(1)2y22f(y)+2g(y)=0,(2) \begin{cases} g(y)-f'(y)=0,&\qquad(1)\\ -2y^2-2f(y)+2g'(y)=0,&\qquad(2) \end{cases}
  將(1)(1)兩邊同時對yy求導,得g(y)=f(y)g'(y)=f''(y),代入(2)(2),有f(y)f(y)=y2f''(y)-f(y)=y^2
  其特徵方程爲r21=0r^2-1=0,得r1=1,r2=1r_1=1,r_2=-1,於是齊次方程的通解爲f1(y)=C1ey+C2ey(3)f_1(y)=C_1e^y+C_2e^{-y}(3)
  設特解爲f(y)=ay2+by+cf^*(y)=ay^2+by+c,代入(3)(3),有a=1,b=0,c=2a=-1,b=0,c=-2,故f(y)=y22f^*(y)=-y^2-2,於是通解爲f(y)=C1ey+C2eyy22f(y)=C_1e^y+C_2e^{-y}-y^2-2,由f(0)=2f(0)=-2,有C1+C2=0C_1+C_2=0,又g(y)=f(y)=C1eyC2ey2yg(y)=f'(y)=C_1e^y-C_2e^{-y}-2y,由g(0)=0g(0)=0,有C1C2=0C_1-C_2=0,故C1=C2=0C_1=C_2=0。所以f(y)=y22,g(y)=2yf(y)=-y^2-2,g(y)=-2y,也即f(x)=x22,g(x)=2xf(x)=-x^2-2,g(x)=-2x

(2)計算(1,1)(0,0)2[xf(x)+g(y)]dx+[x2g(y)+2xy2+2xf(y)]dy\displaystyle\int^{(0,0)}_{(1,1)}2[xf(x)+g(y)]\mathrm{d}x+[x^2g(y)+2xy^2+2xf(y)]\mathrm{d}y

  依題設,結合(1),由折線法,(1,1)(0,1)(0,0)(1,1)\to(0,1)\to(0,0),得
(1,1)(0,0)2[xf(x)+g(y)]dx+[x2g(y)+2xy2+2xf(y)]dy=(1,1)(0,0)2[x(y22)2y]dx+[x2(2y)+2xy2+2x(y22)]dy=201(3x+2)dx=7. \begin{aligned} &\displaystyle\int^{(0,0)}_{(1,1)}2[xf(x)+g(y)]\mathrm{d}x+[x^2g(y)+2xy^2+2xf(y)]\mathrm{d}y\\ =&\displaystyle\int^{(0,0)}_{(1,1)}2[x(-y^2-2)-2y]\mathrm{d}x+[x^2(-2y)+2xy^2+2x(-y^2-2)]\mathrm{d}y\\ =&2\displaystyle\int^1_0(3x+2)\mathrm{d}x=7. \end{aligned}

15.設f(x,y,z)f(x,y,z)爲連續函數,Σ\Sigma爲曲面z=12(x2+y2)z=\cfrac{1}{2}(x^2+y^2)介於z=2z=2z=8z=8之間的上側部分,求Σ[yf(x,y,z)+x]dydz+[xf(x,y,z)+y]dxdz+[2xyf(x,y,z)+z]dydx\displaystyle\iint\limits_{\Sigma}[yf(x,y,z)+x]\mathrm{d}y\mathrm{d}z+[xf(x,y,z)+y]\mathrm{d}x\mathrm{d}z+[2xyf(x,y,z)+z]\mathrm{d}y\mathrm{d}x

  Σ\Sigma的單位法向量爲n=(xx2+y2+1,yx2+y2+1,1x2+y2+1)\bm{n}^\circ=\left(-\cfrac{x}{\sqrt{x^2+y^2+1}},-\cfrac{y}{\sqrt{x^2+y^2+1}},\cfrac{1}{\sqrt{x^2+y^2+1}}\right),將原給第二型曲面積分化成第一型曲面積分,得原積分=Σx2y2zx2+y2+z2dS=\displaystyle\iint\limits_{\Sigma}\cfrac{-x^2-y^2-z}{\sqrt{x^2+y^2+z^2}}\mathrm{d}S
  再將Σ\Sigma投影到平面xOyxOy,得投影域D={(x,y)2x2+y24}D=\{(x,y)|2\leqslant\sqrt{x^2+y^2}\leqslant4\}。又dS=(zx)2+(zy)2+1dσ=x2+y2+1dσ\mathrm{d}S=\sqrt{\left(\cfrac{\partial z}{\partial x}\right)^2+\left(\cfrac{\partial z}{\partial y}\right)^2+1}\mathrm{d}\sigma=\sqrt{x^2+y^2+1}\mathrm{d}\sigma,從而原積分=12D(x2+y2)dσ=1202πdθ24r3dr=60π=-\cfrac{1}{2}\displaystyle\iint\limits_{D}(x^2+y^2)\mathrm{d}\sigma=-\cfrac{1}{2}\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^4_2r^3\mathrm{d}r=-60\pi

19.設函數f(x,y,z)f(x,y,z)在區域Ω={(x,y,z)x2+y2+z21}\Omega=\{(x,y,z)|x^2+y^2+z^2\leqslant1\}上具有二階偏導數,且滿足2fx2+2fy2+2fz2=x2+y2+z2\cfrac{\partial^2f}{\partial x^2}+\cfrac{\partial^2f}{\partial y^2}+\cfrac{\partial^2f}{\partial z^2}=\sqrt{x^2+y^2+z^2},計算I=Ω(xfx+yfy+zfz)dxdydzI=\displaystyle\iiint\limits_{\Omega}\left(x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}+z\cfrac{\partial f}{\partial z}\right)\mathrm{d}x\mathrm{d}y\mathrm{d}z

  設球面Σ:x2+y2+z2=1\Sigma:x^2+y^2+z^2=1外側的方向餘弦爲(cosα,cosβ,cosγ)(\cos\alpha,\cos\beta,\cos\gamma),有dydzcosα=dxdzcosβ=dydxcosγ=dS\cfrac{\mathrm{d}y\mathrm{d}z}{\cos\alpha}=\cfrac{\mathrm{d}x\mathrm{d}z}{\cos\beta}=\cfrac{\mathrm{d}y\mathrm{d}x}{\cos\gamma}=\mathrm{d}S,故
I~=Σ(fxcosα+fycosβ+fzcosγ)dS=Σfxdydz+fydzdx+fzdxdy.(1) \widetilde{I}=\displaystyle\oiint\limits_{\Sigma}\left(\cfrac{\partial f}{\partial x}\cos\alpha+\cfrac{\partial f}{\partial y}\cos\beta+\cfrac{\partial f}{\partial z}\cos\gamma\right)\mathrm{d}S=\displaystyle\oiint\limits_{\Sigma}\cfrac{\partial f}{\partial x}\mathrm{d}y\mathrm{d}z+\cfrac{\partial f}{\partial y}\mathrm{d}z\mathrm{d}x+\cfrac{\partial f}{\partial z}\mathrm{d}x\mathrm{d}y.\qquad(1)
  又由於Σ:x2+y2+z2=1\Sigma:x^2+y^2+z^2=1,故還可寫出
I~=Σ(x2+y2+z2)(fxcosα+fycosβ+fzcosγ)dS=Σ(x2+y2+z2)fxdydz+(x2+y2+z2)fydzdx+(x2+y2+z2)fzdxdy.(2) \begin{aligned} \widetilde{I}&=\displaystyle\oiint\limits_{\Sigma}(x^2+y^2+z^2)\left(\cfrac{\partial f}{\partial x}\cos\alpha+\cfrac{\partial f}{\partial y}\cos\beta+\cfrac{\partial f}{\partial z}\cos\gamma\right)\mathrm{d}S\\ &=\displaystyle\oiint\limits_{\Sigma}(x^2+y^2+z^2)\cfrac{\partial f}{\partial x}\mathrm{d}y\mathrm{d}z+(x^2+y^2+z^2)\cfrac{\partial f}{\partial y}\mathrm{d}z\mathrm{d}x+(x^2+y^2+z^2)\cfrac{\partial f}{\partial z}\mathrm{d}x\mathrm{d}y.\qquad(2) \end{aligned}
  (1),(2)(1),(2)式都用高斯公式,有
Ω(2fx2+2fy2+2fz2)dv=2Ω(xfx+yfy+zfz)dxdydz+Ω(x2+y2+z2)(2fx2+2fy2+2fz2)dv \begin{aligned} &\displaystyle\iiint\limits_{\Omega}\left(\cfrac{\partial^2f}{\partial x^2}+\cfrac{\partial^2f}{\partial y^2}+\cfrac{\partial^2f}{\partial z^2}\right)\mathrm{d}v\\ =&2\displaystyle\iiint\limits_{\Omega}\left(x\cfrac{\partial f}{\partial x}+y\cfrac{\partial f}{\partial y}+z\cfrac{\partial f}{\partial z}\right)\mathrm{d}x\mathrm{d}y\mathrm{d}z+\displaystyle\iiint\limits_{\Omega}(x^2+y^2+z^2)\left(\cfrac{\partial^2f}{\partial x^2}+\cfrac{\partial^2f}{\partial y^2}+\cfrac{\partial^2f}{\partial z^2}\right)\mathrm{d}v \end{aligned}
  故
I=12Ω(2fx2+2fy2+2fz2)dv12Ω(x2+y2+z2)(2fx2+2fy2+2fz2)dv=12Ωx2+y2+z2dv12Ω(x2+y2+z2)32dv=1202πdθ0πdφ01r3sinφdr1202πdθ0πdφ01r5sinφdr=2π(1416). \begin{aligned} I&=\cfrac{1}{2}\displaystyle\iiint\limits_{\Omega}\left(\cfrac{\partial^2f}{\partial x^2}+\cfrac{\partial^2f}{\partial y^2}+\cfrac{\partial^2f}{\partial z^2}\right)\mathrm{d}v-\cfrac{1}{2}\displaystyle\iiint\limits_{\Omega}(x^2+y^2+z^2)\left(\cfrac{\partial^2f}{\partial x^2}+\cfrac{\partial^2f}{\partial y^2}+\cfrac{\partial^2f}{\partial z^2}\right)\mathrm{d}v\\ &=\cfrac{1}{2}\displaystyle\iiint\limits_{\Omega}\sqrt{x^2+y^2+z^2}\mathrm{d}v-\cfrac{1}{2}\displaystyle\iiint\limits_{\Omega}(x^2+y^2+z^2)^{\frac{3}{2}}\mathrm{d}v\\ &=\cfrac{1}{2}\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^\pi_0\mathrm{d}\varphi\displaystyle\int^1_0r^3\sin\varphi\mathrm{d}r-\cfrac{1}{2}\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^\pi_0\mathrm{d}\varphi\displaystyle\int^1_0r^5\sin\varphi\mathrm{d}r\\ &=2\pi\left(\cfrac{1}{4}-\cfrac{1}{6}\right). \end{aligned}

20.計算曲線積分I=Ly2dx+z2dy+x2dzI=\displaystyle\oint_Ly^2\mathrm{d}x+z^2\mathrm{d}y+x^2\mathrm{d}z,其中曲線LL{x2+y2+z2=4,x2+y2=2x(z0)\begin{cases}x^2+y^2+z^2=4,\\x^2+y^2=2x\end{cases}(z\geqslant0),從xx軸的正向往負向看去,取逆時針方向。

  Σ:z=4x2y2\Sigma:z=\sqrt{4-x^2-y^2},以LL爲邊界,取上側,由斯托克斯公式,
I=Ly2dx+z2dy+x2dz=Σdydzdzdxdxdyxyzy2z2x2=Σ2zdydz2xdzdx2ydxdy \begin{aligned} I&=\displaystyle\oint_Ly^2\mathrm{d}x+z^2\mathrm{d}y+x^2\mathrm{d}z\\& =\displaystyle\iint\limits_{\Sigma}\begin{vmatrix}\mathrm{d}y\mathrm{d}z&\mathrm{d}z\mathrm{d}x&\mathrm{d}x\mathrm{d}y\\\cfrac{\partial}{\partial x}&\cfrac{\partial}{\partial y}&\cfrac{\partial}{\partial z}\\y^2&z^2&x^2\end{vmatrix}\\ &=\displaystyle\iint\limits_{\Sigma}-2z\mathrm{d}y\mathrm{d}z-2x\mathrm{d}z\mathrm{d}x-2y\mathrm{d}x\mathrm{d}y \end{aligned}
  Σ\Sigma的法向量爲
n=(zx,zy,1)=(x4x2y2,y4x2y2,1),Dxy={(x,y)(x1)2+y21}, \bm{n}^\circ=(-z'_x,-z'_y,1)=\left(\cfrac{x}{\sqrt{4-x^2-y^2}},\cfrac{y}{\sqrt{4-x^2-y^2}},1\right),\\ D_{xy}=\{(x,y)|(x-1)^2+y^2\leqslant1\},
  故
I=Dxy(24x2y2,2x,2y)(x4x2y2,y4x2y2,1)dxdy=Dxy(2x2xy4x2y22y)dxdy=2Dxyxdxdy=2π2π2dθ2cosθrcosθrdr=3230π2cos4θdθ=2π. \begin{aligned} I&=\displaystyle\iint\limits_{D_{xy}}(-2\sqrt{4-x^2-y^2},-2x,-2y)\cdot\left(\cfrac{x}{\sqrt{4-x^2-y^2}},\cfrac{y}{\sqrt{4-x^2-y^2}},1\right)\mathrm{d}x\mathrm{d}y\\ &=\displaystyle\iint\limits_{D_{xy}}\left(-2x-\cfrac{2xy}{\sqrt{4-x^2-y^2}}-2y\right)\mathrm{d}x\mathrm{d}y=-2\displaystyle\iint\limits_{D_{xy}}x\mathrm{d}x\mathrm{d}y\\ &=-2\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\mathrm{d}\theta\displaystyle\int^{2\cos\theta}r\cos\theta\cdot r\mathrm{d}r=-\cfrac{32}{3}\displaystyle\int^{\frac{\pi}{2}}_0\cos^4\theta\mathrm{d}\theta=-2\pi. \end{aligned}

寫在最後

  本章未完,剩餘部分見張宇1000題高等數學第十八章多元函數積分學(一),傳送門在這裏
  如果覺得文章不錯就點個贊吧。另外,如果有不同的觀點,歡迎留言或私信。
   歡迎非商業轉載,轉載請註明出處。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章