李永樂複習全書高等數學 第七章 無窮級數

目錄

7.1  常數項級數

例2  判定下列級數的斂散性:

(2)n=1ann!nn(a>0);\displaystyle\sum\limits_{n=1}^\infty\cfrac{a^nn!}{n^n}(a>0);

  由於
limnun+1un=limnan+1(n+1)!(n+1)n+1nnann!=alimnnn(n+1)n=alimn1(1+1n)n=ae, \begin{aligned} \lim\limits_{n\to\infty}\cfrac{u_{n+1}}{u_n}&=\lim\limits_{n\to\infty}\cfrac{a^{n+1}(n+1)!}{(n+1)^{n+1}}\cdot\cfrac{n^n}{a^nn!}=a\lim\limits_{n\to\infty}\cfrac{n^n}{(n+1)^n}\\ &=a\lim\limits_{n\to\infty}\cfrac{1}{\left(1+\cfrac{1}{n}\right)^n}=\cfrac{a}{e}, \end{aligned}
  則當0<a<e0<a<e時,原級數收斂;當a>ea>e時,原級數發散;當a=ea=e時,limnun+1un=limne(1+1n)n=1\lim\limits_{n\to\infty}\cfrac{u_{n+1}}{u_n}=\lim\limits_{n\to\infty}\cfrac{e}{\left(1+\cfrac{1}{n}\right)^n}=1。比值法不能作出判定,但由於當nn\to\infty時,(1+1n)n\left(1+\cfrac{1}{n}\right)^n是單調遞增趨於ee,則un+1un=e(1+1n)n>1\cfrac{u_{n+1}}{u_n}=\cfrac{e}{\left(1+\cfrac{1}{n}\right)^n}>1,即unu_n單調遞增,又un>0u_n>0,則un0u_n\nrightarrow0,原級數發散。(這道題主要利用了分類討論求解

(4)n=1(n+1n)pln(1+1n)(p>0)\displaystyle\sum\limits_{n=1}^\infty(\sqrt{n+1}-\sqrt{n})^p\ln\left(1+\cfrac{1}{n}\right)(p>0)

  由於ln(1+1n)1n(n)\ln\left(1+\cfrac{1}{n}\right)\sim\cfrac{1}{n}(n\to\infty),則原級數與級數n=1(n+1n)p1n\sum\limits_{n=1}^\infty(\sqrt{n+1}-\sqrt{n})^p\cfrac{1}{n}同斂散,而(n+1n)p1n=1(n+1+n)pn12pnp2n=12p1n1+p2(\sqrt{n+1}-\sqrt{n})^p\cdot\cfrac{1}{n}=\cfrac{1}{(\sqrt{n+1}+\sqrt{n})^pn}\sim\cfrac{1}{2^pn^{\frac{p}{2}}n}=\cfrac{1}{2^p}\cfrac{1}{n^{1+\frac{p}{2}}},則原級數在p>0p>0時收斂(p0p\leqslant0時發散)。(這道題主要利用了等價無窮小代換求解

例3  判定下列級數的斂散性:

(2)n=1(n1n2+11);\displaystyle\sum\limits_{n=1}^\infty(n^{\frac{1}{n^2+1}}-1);

  由於n1n2+11=elnnn2+11lnnn2+1<lnnn2n^{\frac{1}{n^2+1}}-1=e^{\frac{\ln n}{n^2+1}}-1\sim\cfrac{\ln n}{n^2+1}<\cfrac{\ln n}{n^2},而n=1lnnn2\displaystyle\sum\limits_{n=1}^\infty\cfrac{\ln n}{n^2}收斂。(這道題主要利用了放縮法求解

(3)n=1(1nln(1+1n)).\displaystyle\sum\limits_{n=1}^\infty\left(\cfrac{1}{n}-\ln\left(1+\cfrac{1}{n}\right)\right).

  由泰勒公式知ln(1+1n)=1n12n2+ο(1n2)\ln\left(1+\cfrac{1}{n}\right)=\cfrac{1}{n}-\cfrac{1}{2n^2}+\omicron\left(\cfrac{1}{n^2}\right),則1nln(1+1n)=12n2ο(1n2)12n2\cfrac{1}{n}-\ln\left(1+\cfrac{1}{n}\right)=\cfrac{1}{2n^2}-\omicron\left(\cfrac{1}{n^2}\right)\sim\cfrac{1}{2n^2}。而n=11n2\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2}收斂,則原級數收斂。(這道題主要利用了泰勒展開式求解

例6  設n=1an\displaystyle\sum\limits_{n=1}^\infty a_n爲正項級數,下列結論正確的是(  )
(A)(A)limnnan=0\lim\limits_{n\to\infty}na_n=0,則級數n=1an\displaystyle\sum\limits_{n=1}^\infty a_n收斂;
(B)(B)若存在非零常數λ\lambda,使limnnan=λ\lim\limits_{n\to\infty}na_n=\lambda,則級數n=1an\displaystyle\sum\limits_{n=1}^\infty a_n發散;
(C)(C)若級數n=1an\displaystyle\sum\limits_{n=1}^\infty a_n收斂,則limnn2an=0\lim\limits_{n\to\infty}n^2a_n=0
(D)(D)若級數n=1an\displaystyle\sum\limits_{n=1}^\infty a_n發散,則存在非零常數λ\lambda,使得limnnan=λ\lim\limits_{n\to\infty}na_n=\lambda

  考慮an=1nlnna_n=\cfrac{1}{n\ln n},級數n=11nlnn\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n\ln n}發散,但limnnan=limn1lnn=0\lim\limits_{n\to\infty}na_n=\lim\limits_{n\to\infty}\cfrac{1}{\ln n}=0,故(A)(A)不正確。
  考慮an=1n2a_n=\cfrac{1}{n^2},顯然級數n=1an\displaystyle\sum\limits_{n=1}^\infty a_n收斂,但limnn2an=10\lim\limits_{n\to\infty}n^2a_n=1\ne0,故(C)(C)不正確。
  考慮an=1nlnna_n=\cfrac{1}{n\ln n},級數n=1an\displaystyle\sum\limits_{n=1}^\infty a_n發散,但limnnan=limn1lnn=0\lim\limits_{n\to\infty}na_n=\lim\limits_{n\to\infty}\cfrac{1}{\ln n}=0,故(D)(D)不正確。
  由limnnan=λ0\lim\limits_{n\to\infty}na_n=\lambda\ne0知,limnan1n=λ0\lim\limits_{n\to\infty}\cfrac{a_n}{\cfrac{1}{n}}=\lambda\ne0,故級數n=1an\displaystyle\sum\limits_{n=1}^\infty a_nn=11n\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n}同斂散,而n=11n\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n}發散,則n=1an\displaystyle\sum\limits_{n=1}^\infty a_n發散,故應選(B)(B)。(這道題主要利用了級數判定條件求解

例7  判定下列級數的斂散性;

(2)n=1sin(πn2+a2).\displaystyle\sum\limits_{n=1}^\infty\sin(\pi\sqrt{n^2+a^2}).

  由於
sin(πn2+a2)=sin[nπ+(πn2+a2nπ)]=(1)nsin(πn2+a2nπ)=(1)nsina2πn2+a2+n. \begin{aligned} \sin(\pi\sqrt{n^2+a^2})&=\sin[n\pi+(\pi\sqrt{n^2+a^2}-n\pi)]\\ &=(-1)^n\sin(\pi\sqrt{n^2+a^2}-n\pi)\\ &=(-1)^n\sin\cfrac{a^2\pi}{\sqrt{n^2+a^2}+n}. \end{aligned}
  當nn充分大時,0<a2πn2+a2+n<π20<\cfrac{a^2\pi}{\sqrt{n^2+a^2}+n}<\cfrac{\pi}{2},此時sina2πn2+a2+n\sin\cfrac{a^2\pi}{\sqrt{n^2+a^2}+n}單調遞減且limnsina2πn2+a2+n=0\lim\limits_{n\to\infty}\sin\cfrac{a^2\pi}{\sqrt{n^2+a^2}+n}=0,故原級數收斂。(這道題主要利用了分式有理化求解

例14  設0an<1n(n=1,2,)0\leqslant a_n<\cfrac{1}{n}(n=1,2,\cdots),則下列級數中肯定收斂的是(  )
(A)n=1an;(A)\displaystyle\sum\limits_{n=1}^\infty a_n;
(B)n=1(1)nan;(B)\displaystyle\sum\limits_{n=1}^\infty(-1)^na_n;
(C)n=1an;(C)\displaystyle\sum\limits_{n=1}^\infty\sqrt{a_n};
(D)n=1(1)nan2.(D)\displaystyle\sum\limits_{n=1}^\infty(-1)^na^2_n.

  取an=12na_n=\cfrac{1}{2n},顯然0an<1n0\leqslant a_n<\cfrac{1}{n},但n=1an=n=112n\displaystyle\sum\limits_{n=1}^\infty a_n=\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n}發散,故(A)(A)不正確。
  取an={12n,n=2k1,12n,n=2k,(k=1,2,)a_n=\begin{cases}\cfrac{1}{2^n},&n=2k-1,\\\cfrac{1}{2n},&n=2k,\end{cases}(k=1,2,\cdots),顯然有0an<1n0\leqslant a_n<\cfrac{1}{n},但
n=1(1)nan=12+14123+18122n1+14n=n=1122n1+14n=11n, \begin{aligned} \displaystyle\sum\limits_{n=1}^\infty(-1)^na_n&=-\cfrac{1}{2}+\cfrac{1}{4}-\cfrac{1}{2^3}+\cfrac{1}{8}-\cdots-\cfrac{1}{2^{2n-1}}+\cfrac{1}{4n}-\cdots\\ &=-\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2^{2n-1}}+\cfrac{1}{4}\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n}, \end{aligned}
  而n=1122n1\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2^{2n-1}}收斂,n=11n\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n}發散,則n=1(1)nan\displaystyle\sum\limits_{n=1}^\infty(-1)^na_n發散,故(B)(B)不正確。
  取an=12na_n=\cfrac{1}{2n},顯然有0an<1n0\leqslant a_n<\cfrac{1}{n},但n=1an=12n=11n\displaystyle\sum\limits_{n=1}^\infty\sqrt{a_n}=\cfrac{1}{\sqrt{2}}\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{\sqrt{n}}發散,則(C)(C)不正確。
  由0an<1n0\leqslant a_n<\cfrac{1}{n}知,(1)nan2an2<1n2|(-1)^na^2_n|\leqslant a_n^2<\cfrac{1}{n^2}。而n=11n2\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2}收斂,則級數n=1(1)nan2\displaystyle\sum\limits_{n=1}^\infty(-1)^na^2_n絕對收斂,因此,n=1(1)nan2\displaystyle\sum\limits_{n=1}^\infty(-1)^na^2_n肯定收斂,故應選(D)(D)。(這道題主要利用了級數收斂判定條件求解

例24  設數列{an}\{a_n\}單調遞減,且limnan=0\lim\limits_{n\to\infty}a_n=0,試證級數n=1(1)na1+a2++ann\displaystyle\sum\limits_{n=1}^\infty(-1)^n\cfrac{a_1+a_2+\cdots+a_n}{n}收斂。

  記bn=a1+a2++annb_n=\cfrac{a_1+a_2+\cdots+a_n}{n}。由於limnan=0\lim\limits_{n\to\infty}a_n=0,則limnbn=limna1+a2++ann=0\lim\limits_{n\to\infty}b_n=\lim\limits_{n\to\infty}\cfrac{a_1+a_2+\cdots+a_n}{n}=0
bnbn+1=a1+a2++anna1+a2++an+1n+1=a1+a2++annan+1n(n+1)=(a1an+1)+(a2an+1)++(anan+1)n(n+1). \begin{aligned} b_n-b_{n+1}&=\cfrac{a_1+a_2+\cdots+a_n}{n}-\cfrac{a_1+a_2+\cdots+a_{n+1}}{n+1}\\ &=\cfrac{a_1+a_2+\cdots+a_n-na_{n+1}}{n(n+1)}\\ &=\cfrac{(a_1-a_{n+1})+(a_2-a_{n+1})+\cdots+(a_n-a_{n+1})}{n(n+1)}. \end{aligned}
  由於{an}\{a_n\}單調遞減,則bnbn+10b_n-b_{n+1}\leqslant0,即{bn}\{b_n\}單調遞減,故級數n=1(1)na1+a2++ann\displaystyle\sum\limits_{n=1}^\infty(-1)^n\cfrac{a_1+a_2+\cdots+a_n}{n}收斂。(這道題主要利用了數列極限的性質求解

例25  已知f(x)f(x)可導,且f(0)=1,0<f(x)<12f(0)=1,0<f'(x)<\cfrac{1}{2}。設數列{xn}\{x_n\}滿足xn+1=f(xn)x_{n+1}=f(x_n)。證明:

(1)級數n=1(xn+1xn)\displaystyle\sum\limits_{n=1}^\infty(x_{n+1}-x_n)絕對收斂;

  由於xn+1=f(xn)x_{n+1}=f(x_n),所以xn+1xn=f(xn)f(xn1)=f(ξ)(xnxn1)|x_{n+1}-x_n|=|f(x_n)-f(x_{n-1})|=|f'(\xi)(x_n-x_{n-1})|,其中ξ\xi介於xnx_nxn1x_{n-1}之間。
  又因爲0<f(x)<120<f'(x)<\cfrac{1}{2},所以xn+1xn12xnxn112n1x2x1|x_{n+1}-x_n|\leqslant\cfrac{1}{2}|x_{n}-x_{n-1}|\leqslant\cdots\leqslant\cfrac{1}{2^{n-1}}|x_2-x_1|
  由於級數n=112n1x2x1\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2^{n-1}}|x_2-x_1|收斂,所以級數n=1(xn+1xn)\displaystyle\sum\limits_{n=1}^\infty(x_{n+1}-x_n)絕對收斂。

(2)limnxn\lim\limits_{n\to\infty}x_n存在,且0<limnxn<20<\lim\limits_{n\to\infty}x_n<2

  設級數n=1(xn+1xn)\displaystyle\sum\limits_{n=1}^\infty(x_{n+1}-x_n)的前nn項和爲SnS_n,則Sn=xn+1x1S_n=x_{n+1}-x_1
  由(1)知,極限limnSn\lim\limits_{n\to\infty}S_n存在,即n=1(xn+1xn)\displaystyle\sum\limits_{n=1}^\infty(x_{n+1}-x_n)存在,所以limnxn\lim\limits_{n\to\infty}x_n存在。
  設limnxn=a\lim\limits_{n\to\infty}x_n=a,由xn+1=f(xn)x_{n+1}=f(x_n)f(x)f(x)的連續性,等式兩端取極限得a=f(a)a=f(a)
  即aa是函數g(x)=xf(x)g(x)=x-f(x)的零點。由於g(0)=1<0,g(2)=2f(2)=1[f(2)f(0)]=12f(η)g(0)=-1<0,g(2)=2-f(2)=1-[f(2)-f(0)]=1-2f'(\eta),其中η(0,2)\eta\in(0,2)。又g(x)=1f(x)>0g'(x)=1-f'(x)>0,所以g(x)g(x)存在唯一的零點,且零點位於區間(0,2)(0,2)內,於是0<limnxn<20<\lim\limits_{n\to\infty}x_n<2。(這道題主要利用了函數零點存在定理求解

7.2  冪級數

例37  求常數項級數n=11n(n+1)(n+2)\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n(n+1)(n+2)}的和。


un=1n(n+1)(n+2)=12[1n(n+1)1(n+1)(n+2)],Sn=12[(11×212×3)+(12×313×4)++(1n(n+1)1(n+1)(n+2))]=12[11×21(n+1)(n+2)]=14,n=11n(n+1)(n+2)=14. u_n=\cfrac{1}{n(n+1)(n+2)}=\cfrac{1}{2}\left[\cfrac{1}{n(n+1)}-\cfrac{1}{(n+1)(n+2)}\right],\\ \begin{aligned} S_n&=\cfrac{1}{2}\left[\left(\cfrac{1}{1\times2}-\cfrac{1}{2\times3}\right)+\left(\cfrac{1}{2\times3}-\cfrac{1}{3\times4}\right)+\cdots+\left(\cfrac{1}{n(n+1)}-\cfrac{1}{(n+1)(n+2)}\right)\right]\\ &=\cfrac{1}{2}\left[\cfrac{1}{1\times2}-\cfrac{1}{(n+1)(n+2)}\right]=\cfrac{1}{4}, \end{aligned}\\ \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n(n+1)(n+2)}=\cfrac{1}{4}.
這道題主要利用了分式分解求解

例42  求極限limn(1a+2a2++nan)(a>1)\lim\limits_{n\to\infty}\left(\cfrac{1}{a}+\cfrac{2}{a^2}+\cdots+\cfrac{n}{a^n}\right)(a>1)

  令S(x)=n=1nxn(x(1,1))S(x)=\displaystyle\sum\limits_{n=1}^\infty nx^n(x\in(-1,1)),則
S(x)=n=1nxn=xn=1nxn1=x(n=1xn)=x(x1x)=x(1x)2. \begin{aligned} S(x)&=\displaystyle\sum\limits_{n=1}^\infty nx^n=x\displaystyle\sum\limits_{n=1}^\infty nx^{n-1}\\ &=x\left(\displaystyle\sum\limits_{n=1}^\infty x^n\right)'=x\left(\cfrac{x}{1-x}\right)'=\cfrac{x}{(1-x)^2}. \end{aligned}
  所以limn(1a+2a2++nan)=S(1a)=1a(11a)2=a(1a)2\lim\limits_{n\to\infty}\left(\cfrac{1}{a}+\cfrac{2}{a^2}+\cdots+\cfrac{n}{a^n}\right)=S\left(\cfrac{1}{a}\right)=\cfrac{\cfrac{1}{a}}{\left(1-\cfrac{1}{a}\right)^2}=\cfrac{a}{(1-a)^2}。(這道題主要利用了構造函數求解

練習七

10.證明:n=1cosnxn2=112(3x26πx+2π2),0xπ\displaystyle\sum\limits_{n=1}^\infty\cfrac{\cos nx}{n^2}=\cfrac{1}{12}(3x^2-6\pi x+2\pi^2),0\leqslant x\leqslant\pi

  將x22πxx^2-2\pi x0xπ0\leqslant x\leqslant\pi上展開爲餘弦級數得x22πx=2π23+4n=1cosnxn2x^2-2\pi x=-\cfrac{2\pi^2}{3}+4\displaystyle\sum\limits_{n=1}^\infty\cfrac{\cos nx}{n^2},故n=1cosnxn2=112(3x26πx+2π2)\displaystyle\sum\limits_{n=1}^\infty\cfrac{\cos nx}{n^2}=\cfrac{1}{12}(3x^2-6\pi x+2\pi^2)。(這道題主要利用了傅里葉級數求解

寫在最後

  如果覺得文章不錯就點個贊吧。另外,如果有不同的觀點,歡迎留言或私信。
   歡迎非商業轉載,轉載請註明出處。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章