张宇1000题高等数学 第十六章 无穷级数

目录

AA

7.设0un1n0\leqslant u_n\leqslant\cfrac{1}{n},则下列级数一定收敛的是(  )。
(A)n=1un;(A)\displaystyle\sum\limits_{n=1}^\infty u_n;
(B)n=1(1)nun;(B)\displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n;
(C)n=1un;(C)\displaystyle\sum\limits_{n=1}^\infty\sqrt{u_n};
(D)n=1(1)nun2.(D)\displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n^2.

  如n=11n\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n}(A),(C)(A),(C)错误。
  如n=1(1)n+12n\displaystyle\sum\limits_{n=1}^\infty\cfrac{(-1)^n+1}{2n}(B)(B)错误。
  因0un1n0\leqslant u_n\leqslant\cfrac{1}{n},有un21n2u_n^2\leqslant\cfrac{1}{n^2},而n=11n2\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2}收敛,由正项级数的比较判别法知,n=1un2\displaystyle\sum\limits_{n=1}^\infty u_n^2收敛,故n=1(1)nun2\displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n^2绝对收敛,从而收敛,故选(D)(D)。(这道题主要利用了反例求解

20.判别下列正项级数的敛散性。

(3)n=1(n+13n3).\displaystyle\sum\limits_{n=1}^\infty(\sqrt[3]{n+1}-\sqrt[3]{n}).


n+13n3=1(n+1)23+n(n+1)3+n2313(n+1)23 \sqrt[3]{n+1}-\sqrt[3]{n}=\cfrac{1}{\sqrt[3]{(n+1)^2}+\sqrt[3]{n(n+1)}+\sqrt[3]{n^2}}\geqslant\cfrac{1}{3\sqrt[3]{(n+1)^2}}
  又n=11(n+1)23=n=21n23\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{(n+1)^{\frac{2}{3}}}=\displaystyle\sum\limits_{n=2}^\infty\cfrac{1}{n^{\frac{2}{3}}}发散,由比较判别法知,n=1(n+13n3)\displaystyle\sum\limits_{n=1}^\infty(\sqrt[3]{n+1}-\sqrt[3]{n})发散。(这道题主要利用了分子有理化求解

21.设级数n=1an\displaystyle\sum\limits_{n=1}^\infty a_n条件收敛,判别级数n=1nan(x1)n\displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n在点x1=3,x2=3x_1=\sqrt{3},x_2=3处的收敛性。

  由题设条件n=1an\displaystyle\sum\limits_{n=1}^\infty a_n收敛,可知n=1anxn\displaystyle\sum\limits_{n=1}^\infty a_nx^n的收敛半径R=1R=1。若R<1R<1,则n=1anxnx=1=n=1an\displaystyle\sum\limits_{n=1}^\infty a_nx^n\biggm\vert_{x=1}=\displaystyle\sum\limits_{n=1}^\infty a_n发散,与已知矛盾;若R>1R>1,则n=1anxnx=1=n=1an\displaystyle\sum\limits_{n=1}^\infty a_nx^n\biggm\vert_{x=1}=\displaystyle\sum\limits_{n=1}^\infty a_n绝对收敛,与已知矛盾。
  由于n=1nanxn=xn=1nanxx1=xn=1(anxn)\displaystyle\sum\limits_{n=1}^\infty na_nx^n=x\displaystyle\sum\limits_{n=1}^\infty na_nx^{x-1}=x\displaystyle\sum\limits_{n=1}^\infty(a_nx^n)'的收敛半径与n=1anxn\displaystyle\sum\limits_{n=1}^\infty a_nx^n收敛半径相同,即R=1R=1,收敛区间为(1,1)(-1,1)
  当x1=3x_1=\sqrt{3}时,考察n=1nan(x1)n\displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n,由于31<1|\sqrt3-1|<1,因此n=1nan(x1)n\displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^nx1=3x_1=\sqrt{3}处绝对收敛;
  当x2=3x_2=3时,考察n=1nan(x1)n\displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n,由于31>1|3-1|>1,因此n=1nan(x1)n\displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^nx2=3x_2=3处发散。(这道题主要利用了分类讨论求解

BB

2.下列命题正确的是(  )。
(A)(A)un<vn(n=1,2,3,)u_n<v_n(n=1,2,3,\cdots),则n=1unn=1vn\displaystyle\sum\limits_{n=1}^\infty u_n\leqslant\displaystyle\sum\limits_{n=1}^\infty v_n
(B)(B)un<vn(n=1,2,3,)u_n<v_n(n=1,2,3,\cdots)n=1vn\displaystyle\sum\limits_{n=1}^\infty v_n收敛,则n=1un\displaystyle\sum\limits_{n=1}^\infty u_n收敛;
(C)(C)limnunvn=1\lim\limits_{n\to\infty}\cfrac{u_n}{v_n}=1n=1vn\displaystyle\sum\limits_{n=1}^\infty v_n收敛,则n=1un\displaystyle\sum\limits_{n=1}^\infty u_n收敛;
(D)(D)wn<un<vn(n=1,2,3,)w_n<u_n<v_n(n=1,2,3,\cdots)n=1wn\displaystyle\sum\limits_{n=1}^\infty w_nn=1vn\displaystyle\sum\limits_{n=1}^\infty v_n收敛,则n=1un\displaystyle\sum\limits_{n=1}^\infty u_n收敛。

  因为只有当级数收敛时,才能比较其和的大小,故(A)(A)错误。
  若取级数n=1(1n)\displaystyle\sum\limits_{n=1}^\infty\left(-\cfrac{1}{n}\right)n=11n2\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2},可见(B)(B)错误。
  若取级数n=1(1)nn\displaystyle\sum\limits_{n=1}^\infty\cfrac{(-1)^n}{\sqrt{n}}n=1[(1)nn+1n]\displaystyle\sum\limits_{n=1}^\infty\left[\cfrac{(-1)^n}{\sqrt{n}}+\cfrac{1}{n}\right],可见(C)(C)错误。
  故选(D)(D)。(这道题主要利用了反例求解

CC

6.设函数fn(x)=0xt(1t)sin2ntdt(x>0)f_n(x)=\displaystyle\int^x_0t(1-t)\sin^{2n}t\mathrm{d}t(x>0),其中nn为正整数。

(1)证明fn(x)f_n(x)在区间(0,+)(0,+\infty)上存在最大值;

  由fn(x)=x(1x)sin2nx=0f'_n(x)=x(1-x)\sin^{2n}x=0,解得函数fn(x)f_n(x)(0,+)(0,+\infty)内的所有驻点为x0=1x_0=1xk=kπ,k=1,2,x_k=k\pi,k=1,2,\cdots。易知,x0=1x_0=1fn(x)f_n(x)(0,+)(0,+\infty)上的唯一极值点且为极大值点,所以fn(1)f_n(1)fn(x)f_n(x)(0,+)(0,+\infty)上的最大值。

(2)记ana_n为函数fn(x)f_n(x)(0,+)(0,+\infty)上的最大值(n1)(n\geqslant1),证明级数n=1an\displaystyle\sum\limits_{n=1}^\infty a_n收敛。

  因为an=fn(1)=01t(1t)sin2ntdt(n1)a_n=f_n(1)=\displaystyle\int^1_0t(1-t)\sin^{2n}t\mathrm{d}t(n\geqslant1),且当0tπ20\leqslant t\leqslant\cfrac{\pi}{2}时有sintt\sin t\leqslant t,所以0an01t(1t)t2ndt=01t2n+1dt01t2n+2dt=12n+212n+31n20\leqslant a_n\leqslant\displaystyle\int^1_0t(1-t)t^{2n}\mathrm{d}t=\displaystyle\int^1_0t^{2n+1}\mathrm{d}t-\displaystyle\int^1_0t^{2n+2}\mathrm{d}t=\cfrac{1}{2n+2}-\cfrac{1}{2n+3}\leqslant\cfrac{1}{n^2}。利用比较判别法,由n=11n2\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2}收敛可知,级数n=1an\displaystyle\sum\limits_{n=1}^\infty a_n收敛。(这道题主要利用了放缩法求解

7.

(1)设f(x)f(x)为任意阶可导函数,且f(x)=n=1anxnf(x)=\displaystyle\sum\limits_{n=1}^\infty a_nx^n,若f(x)f(x)为奇函数,证明f(x)=n=1a2n1x2n1f(x)=\displaystyle\sum\limits_{n=1}^\infty a_{2n-1}x^{2n-1}

  由f(x)f(x)为奇函数,即f(x)=f(x)f(x)=-f(-x),于是有n=1anxn=n=1an(x)n=n=1(1)n+1anxn\displaystyle\sum\limits_{n=1}^\infty a_nx^n=-\displaystyle\sum\limits_{n=1}^\infty a_n(-x)^n=\displaystyle\sum\limits_{n=1}^\infty(-1)^{n+1}a_nx^n,比较两端xx同次项系数,得an=(1)n+1ana_n=(-1)^{n+1}a_n
  当n=2kn=2k为偶数时,a2k=a2ka_{2k}=-a_{2k},则a2k=0,k=0,1,2,a_{2k}=0,k=0,1,2,\cdots
  当n=2k1n=2k-1为奇数时,a2k1=a2k1,k=1,2,a_{2k-1}=a_{2k-1},k=1,2,\cdots
  综上可知,f(x)=k=1a2k1x2k1f(x)=\displaystyle\sum\limits_{k=1}^\infty a_{2k-1}x^{2k-1},亦可写成f(x)=n=1a2n1x2n1f(x)=\displaystyle\sum\limits_{n=1}^\infty a_{2n-1}x^{2n-1}

(2)将函数f(x)=0xex2t2dtf(x)=\displaystyle\int^x_0e^{x^2-t^2}\mathrm{d}t展开为xx的幂级数。

  f(x)=ex20xet2dtf(x)=e^{x^2}\cdot\displaystyle\int^x_0e^{-t^2}\mathrm{d}t为奇函数,由(1)(1),设f(x)=n=1a2n1x2n1f(x)=\displaystyle\sum\limits_{n=1}^\infty a_{2n-1}x^{2n-1}
  对求导f(x)=0xex2t2dtf(x)=\displaystyle\int^x_0e^{x^2-t^2}\mathrm{d}t,得f(x)=2xf(x)+1f'(x)=2xf(x)+1,即n=1(2n1)a2n1x2n2=n=12a2n1x2n+1\displaystyle\sum\limits_{n=1}^\infty(2n-1)a_{2n-1}x^{2n-2}=\displaystyle\sum\limits_{n=1}^\infty2a_{2n-1}x^{2n}+1,也即n=1(2n+1)a2n+1x2n+a1=n=12a2n1x2n+1\displaystyle\sum\limits_{n=1}^\infty(2n+1)a_{2n+1}x^{2n}+a_1=\displaystyle\sum\limits_{n=1}^\infty2a_{2n-1}x^{2n}+1
  比较两端同次项系数,得a1=1a_1=1,于是
a2n+1=22n+1a2n1=22n+122n1a2n3==22n+122n123a1=2n(2n+1)!!. \begin{aligned} a_{2n+1}&=\cfrac{2}{2n+1}a_{2n-1}=\cfrac{2}{2n+1}\cdot\cfrac{2}{2n-1}a_{2n-3}=\cdots\\ &=\cfrac{2}{2n+1}\cdot\cfrac{2}{2n-1}\cdot\cdots\cdot\cfrac{2}{3}\cdot a_1=\cfrac{2^n}{(2n+1)!!}. \end{aligned}
  故f(x)=x+n=12n(2n+1)!!x2n+1,x(,+)f(x)=x+\displaystyle\sum\limits_{n=1}^\infty\cfrac{2^n}{(2n+1)!!}x^{2n+1},x\in(-\infty,+\infty)。(这道题主要利用了微分方程求解

9.设x>2x>2,证明lnx+2x2=ln(x+1x1)2+2n=112n1(2x33x)2n1\ln\cfrac{x+2}{x-2}=\ln\left(\cfrac{x+1}{x-1}\right)^2+2\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}\left(\cfrac{2}{x^3-3x}\right)^{2n-1}

  令S(u)=n=112n1u2n1S(u)=\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}u^{2n-1},于是当u<1|u|<1时,有S(u)=S(0)+0uS(t)dt=0u(n=112n1t2n1)dt=0un=1t2n2dt=0u11t2dt=12ln1+u1uS(u)=S(0)+\displaystyle\int^u_0S'(t)\mathrm{d}t=\displaystyle\int^u_0\left(\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}t^{2n-1}\right)\mathrm{d}t=\displaystyle\int^u_0\displaystyle\sum\limits_{n=1}^\infty t^{2n-2}\mathrm{d}t=\displaystyle\int^u_0\cfrac{1}{1-t^2}\mathrm{d}t=\cfrac{1}{2}\ln\cfrac{1+u}{1-u}。代入u=2x33xu=\cfrac{2}{x^3-3x},故n=112n1(2x33x)2n1=12ln(x+2)(x1)2(x+1)2(x2)(x>2)\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}\left(\cfrac{2}{x^3-3x}\right)^{2n-1}=\cfrac{1}{2}\ln\cfrac{(x+2)(x-1)^2}{(x+1)^2(x-2)}(x>2)。(这道题主要利用了幂级数展开求解

10.设bn>0b_n>0,当n2n\geqslant2时,bn=bn1+(n1)bn2,b0=b1=1b_n=b_{n-1}+(n-1)b_{n-2},b_0=b_1=1bnbn1\cfrac{b_n}{b_{n-1}}有界,求n=1bnxnn!\displaystyle\sum\limits_{n=1}^\infty b_n\cfrac{x^n}{n!}的和函数。

  记an=bnn!a_n=\cfrac{b_n}{n!},则limnan+1an=limnbn+1(n+1)!n!bn=limn1n+1bn+1bn=0\lim\limits_{n\to\infty}\left|\cfrac{a_{n+1}}{a_n}\right|=\lim\limits_{n\to\infty}\left|\cfrac{b_{n+1}}{(n+1)!}\cdot\cfrac{n!}{b_n}\right|=\lim\limits_{n\to\infty}\left|\cfrac{1}{n+1}\cdot\cfrac{b_{n+1}}{b_n}\right|=0,故收敛区间为(,+)(-\infty,+\infty)。又记S(x)=n=1bnxnn!S(x)=\displaystyle\sum\limits_{n=1}^\infty b_n\cfrac{x^n}{n!},则
S(x)=n=1bnxn1(n1)!=b1+n=2[bn1+(n1)bn2]xn1(n1)!=n=1bn1xn1(n1)!+n=2bn2xn2(n2)!x=n=0bnxnn!+xn=0bnxnn! \begin{aligned} S'(x)&=\displaystyle\sum\limits_{n=1}^\infty b_n\cfrac{x^{n-1}}{(n-1)!}=b_1+\displaystyle\sum\limits_{n=2}^\infty[b_{n-1}+(n-1)b_{n-2}]\cfrac{x^{n-1}}{(n-1)!}\\ &=\displaystyle\sum\limits_{n=1}^\infty b_{n-1}\cfrac{x^{n-1}}{(n-1)!}+\displaystyle\sum\limits_{n=2}^\infty b_{n-2}\cfrac{x^{n-2}}{(n-2)!}\cdot x=\displaystyle\sum\limits_{n=0}^\infty b_n\cfrac{x^n}{n!}+x\cdot\displaystyle\sum\limits_{n=0}^\infty b_n\cfrac{x^n}{n!} \end{aligned}
  于是S(x)S(x)=1+x\cfrac{S'(x)}{S(x)}=1+x,即1S(x)d[S(x)]=(1+x)dx\displaystyle\int\cfrac{1}{S(x)}\mathrm{d}[S(x)]=\displaystyle\int(1+x)\mathrm{d}x,得lnS(x)=x+x22+lnC1\ln|S(x)|=x+\cfrac{x^2}{2}+\ln C_1,也即得S(x)=±C1ex+x22=Cex+x22S(x)=\pm C_1e^{x+\frac{x^2}{2}}=Ce^{x+\frac{x^2}{2}},又S(0)=1S(0)=1,故C=1C=1,于是S(x)=ex+x22,x(,+)S(x)=e^{x+\frac{x^2}{2}},x\in(-\infty,+\infty)。(这道题主要利用了微分方程求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章