均值和方差的计算(已知两样本标准差,求总体标准差)

假设总体z_{1}...z_{m+n}数量为(m+n),其只包含两个亚组(x_{1}...x_{n}y_{1}...y_{m}),第一组x_{1}...x_{n}的平均值和标准差分别为\bar{x}\sigma_{x},第二组y_{1}...y_{m}的平均值和标准差分别为\bar{y}\sigma_{y},则总体的平均值\bar{z}和标准差\sigma_{z}是多少呢?

先给答案:

\bar{z}=\frac{n\bar{x}+m\bar{y}}{m+n}\sigma_{z}=\sqrt{\frac{n\sigma_{x}^{2}+m\sigma_{y}^{2}+\frac{mn(\bar{x}-\bar{y})^{2}}{m+n}}{m+n}}

平均值推导过程:

\bar{z}=\frac{\sum_{i=1}^{n}x_{i}+\sum_{i=1}^{m}y_{i}}{m+n}=\frac{n\bar{x}+m\bar{y}}{m+n}

标准差推导过程:

(m+n)\sigma_{z}^{2}=(x_{1}-\bar{z})^{2}+...+(x_{n}-\bar{z})^{2}+(y_{1}-\bar{z})^{2}+...+(y_{m}-\bar{z})^{2}

(n)\sigma_{x}^{2}=(x_{1}-\bar{x})^{2}+...+(x_{n}-\bar{x})^{2}

(n)\sigma_{y}^{2}=(y_{1}-\bar{y})^{2}+...+(y_{n}-\bar{y})^{2}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\{(x_{1}-\bar{z})^{2}-(x_{1}-\bar{x})^{2}\}+...+\{(x_{n}-\bar{z})^{2}-(x_{n}-\bar{x})^{2}\}+\{(y_{1}-\bar{z})^{2}-(y_{1}-\bar{y})^{2}\}+...+\{(y_{n}-\bar{z})^{2}-(y_{n}-\bar{y})^{2}\}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\{(x_{1}-\bar{z}+x_{1}-\bar{x})(x_{1}-\bar{z}-x_{1}+\bar{x})\}+...+\{(x_{n}-\bar{z}+x_{n}-\bar{x})(x_{n}-\bar{z}-x_{n}+\bar{x})\}+\{(y_{1}-\bar{z}+y_{1}-\bar{y})(y_{1}-\bar{z}-y_{1}+\bar{y})\}+...+\{(y_{n}-\bar{z}+y_{n}-\bar{y})(y_{n}-\bar{z}-y_{n}+\bar{y})\}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\{(2x_{1}-\bar{z}-\bar{x})(\bar{x}-\bar{z})\}+...+\{(2x_{n}-\bar{z}-\bar{x})(\bar{x}-\bar{z})\}+\{(2y_{1}-\bar{z}-\bar{y})(\bar{y}-\bar{z})\}+...+\{(2y_{n}-\bar{z}-\bar{y})(\bar{y}-\bar{z})\}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\sum_{i=1}^{n}\{(2x_{i}-\bar{z}-\bar{x})(\bar{x}-\bar{z})\}+\sum_{i=1}^{m}\{(2y_{i}-\bar{z}-\bar{y})(\bar{y}-\bar{z})\}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=(2n\bar{x}-n\bar{z}-n\bar{x})(\bar{x}-\bar{z})+(2m\bar{y}-m\bar{z}-m\bar{y})(\bar{y}-\bar{z})

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=(n\bar{x}-n\bar{z})(\bar{x}-\bar{z})+(m\bar{y}-m\bar{z})(\bar{y}-\bar{z})

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=n(\bar{x}-\bar{z})^{^{2}}+m(\bar{y}-\bar{z})^{^{2}}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=n(\frac{m\bar{x}+n\bar{x}-n\bar{x}-m\bar{y}}{m+n} )^{^{2}}+m(\frac{m\bar{y}+n\bar{y}-n\bar{x}-m\bar{y}}{m+n})^{^{2}}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=n(\frac{m\bar{x}-m\bar{y}}{m+n} )^{^{2}}+m(\frac{n\bar{y}-n\bar{x}}{m+n})^{^{2}}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\frac{m^{^{2}}n\bar{x}^{^{2}}-2m^{^{2}}n\bar{x}\bar{y}+m^{^{2}}n\bar{y}^{^{2}}+mn^{^{2}}\bar{y}^{^{2}}-2mn^{^{2}}\bar{x}\bar{y}+mn^{^{2}}\bar{x}^{^{2}}}{(m+n)^{^{2}} }

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\frac{(m+n)mn\bar{x}^{^{2}}-(m+n)*2mn\bar{x}\bar{y}+(m+n)mn\bar{y}^{^{2}}}{(m+n)^{^{2}} }

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\frac{mn\bar{x}^{^{2}}-2mn\bar{x}\bar{y}+mn\bar{y}^{^{2}}}{m+n}

\sigma_{z}=\sqrt{\frac{n\sigma_{x}^{2}+m\sigma_{y}^{2}+\frac{mn(\bar{x}-\bar{y})^{2}}{m+n}}{m+n}}

以上为推导过程,如果问题,欢迎反馈。

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章