矩陣的QR分解

在線性最小二乘裏,最後得到的閉式解爲(ATA)x=ATb({A^T}A)x = {A^T}b,對於該等式的求解,其中一種方法是正交變換法求解,而正交變換求解線性最小二乘的實質就是對矩陣AA進行QR分解。

QR分解的概念:若實非奇異對稱矩陣A能化爲正交矩陣Q和實非奇異上三角矩陣R的乘積,即A=QRA=QR,則稱該式爲A的QR分解。

事實上,任何的實非奇異n階矩陣A都可以分解成正交矩陣Q和上三角矩陣R的乘積,這可以通過施密特正交化來證明。
證明過程如下:
對於實非奇異n階矩陣A的各個列向量依次爲α1,α2,αn{\alpha _1},{\alpha _2}, \cdots {\alpha _n},那麼,通過施密特正交化得到的n個標準正交向量如下,
{β1=b11α1β2=b12α1+b22α2βn=b1nα1+b2nα2++bnnαn\left\{ {\begin{array}{l} {{\beta _1} = {b_{11}}{\alpha _1}}\\ {{\beta _2} = {b_{12}}{\alpha _1} + {b_{22}}{\alpha _2}}\\ \vdots \\ {{\beta _n} = {b_{1n}}{\alpha _1} + {b_{2n}}{\alpha _2} + \cdots + {b_{nn}}{\alpha _n}} \end{array}} \right.

則,寫成矩陣形式爲,
(β1,β2,βn)=(α1,α2,αn)B({\beta _1},{\beta _2}, \cdots {\beta _n}) = ({\alpha _1},{\alpha _2}, \cdots {\alpha _n})B
即,
Q=ABQ=AB
其中,B=[b11b12b1nb22b2nbnn]B = \left[ {\begin{array}{l} {{b_{11}}}&{{b_{12}}}& \cdots &{{b_{1n}}}\\ {}&{{b_{22}}}& \cdots &{{b_{2n}}}\\ {}&{}& \ddots & \vdots \\ {}&{}&{}&{{b_{nn}}} \end{array}} \right]
很顯然,矩陣B就是一個上三角矩陣,而且B可逆,QR分解中的R就是R=B1R = {B^{ - 1}}Q=[β1,β2,βn]Q=[{\beta _1},{\beta _2}, \cdots {\beta _n}]是正交矩陣(施密特正交化的結果),則有,
A=QB1=QRA=QB^{-1}=QR
這就說明了QR分解的存在性。

從上述的QR分解存在性的證明過程可以看出,QR分解步驟的關鍵就是找到一個上三角矩陣R和一個正交矩陣Q。那麼,怎麼才能得到一個Q和R,正交變換就能做到這一點。所以,QR分解的方法就有三種,第一種就是上述證明過程所示的,用施密特正交化求解,其他兩種是Givens變換(初等旋轉變換)和Housholder(鏡像變換)。

施密特正交化

α1,α2,αn{\alpha _1},{\alpha _2}, \cdots {\alpha _n}爲一組線性無關的向量,施密特正交化後的向量爲β1,β2,βn{\beta _1},{\beta _2}, \cdots {\beta _n},則施密特正交化的一般式如下,
{βm=αm+km1βm1+km2βm2++km,m1β1kmi=(xm,βmi)(βmi,βmi)              i=1,2,m1\left\{ {\begin{array}{l} {{\beta _m} = {\alpha _m} + {k_{m1}}{\beta _{m - 1}} + {k_{m2}}{\beta _{m - 2}} + \cdots + {k_{m,m - 1}}{\beta _1}}\\\\ {{k_{mi}} = - \frac{{({x_m},{\beta _{m - i}})}}{{({\beta _{m - i}},{\beta _{m - i}})}}{\kern 1pt} {\kern 1pt} {\kern 1pt} \;\;\;\;\;\;\;i = 1,2, \cdots m - 1} \end{array}} \right.

舉個例子,對矩陣A=[110111002]A = \left[ {\begin{array}{l} 1&1&0\\ 1&{ - 1}&1\\ 0&0&2 \end{array}} \right]進行QR分解。

A=[α1,α2,α3]A=[\alpha_1,\alpha_2,\alpha_3],則α1=(1,1,0)T,α2=(1,1,0)T,α1=(0,1,2)T\alpha_1=(1,1,0)^T,\alpha_2=(1,-1,0)^T,\alpha_1=(0,1,2)^T,則根據上述的施密特方法得,

{β1=α1=(1,1,0)Tβ2=α2(β1,α2)(β1,β1)β1=(1,1,0)Tβ3=α3(β1,α3)(β1,β1)β1(β2,α3)(β2,β2)β2=(0,0,2)T\left\{ {\begin{array}{l} {\beta _1^{'} = {\alpha _1} = {{(1,1,0)}^T}}\\\\ {\beta _2^{'} = {\alpha _2} - \frac{{(\beta _1^{'},{\alpha _2})}}{{(\beta _1^{'},\beta _1^{'})}}\beta _1^{'} = {{(1, - 1,0)}^T}}\\\\ {\beta _3^{'} = {\alpha _3} - \frac{{(\beta _1^{'},{\alpha _3})}}{{(\beta _1^{'},\beta _1^{'})}}\beta _1^{'} - \frac{{(\beta _2^{'},{\alpha _3})}}{{(\beta _2^{'},\beta _2^{'})}}\beta _2^{'} = {{(0,0,2)}^T}} \end{array}} \right.
單位化後得,
{β1=(12,12,0)T=12α1β2=(12,12,0)T=12α2β3=(0,0,1)T=14α1+14α2+12α3\left\{ {\begin{array}{l} {{\beta _1} = {{(\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }},0)}^T} = \frac{1}{{\sqrt 2 }}{\alpha _1}}\\\\ {{\beta _2} = {{(\frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }},0)}^T} = \frac{1}{{\sqrt 2 }}{\alpha _2}}\\\\ {{\beta _3} = {{(0,0,1)}^T} = - \frac{1}{4}{\alpha _1} + \frac{1}{4}{\alpha _2} + \frac{1}{2}{\alpha _3}} \end{array}} \right.
上式寫成矩陣形式,
(β1,β2,β3)Q=(α1,α2,α3)A[12014012140012]\underbrace {({\beta _1},{\beta _2},{\beta _3})}_Q = \underbrace {({\alpha _1},{\alpha _2},{\alpha _3})}_A\left[ {\begin{array}{l} {\frac{1}{{\sqrt 2 }}}&0&{ - \frac{1}{4}}\\\\ 0&{\frac{1}{{\sqrt 2 }}}&{\frac{1}{4}}\\\\ 0&0&{\frac{1}{2}} \end{array}} \right]

A=(β1,β2,β3)[12014012140012]1  =[1212012120001][20120212002]=QR\begin{array}{l} A = ({\beta _1},{\beta _2},{\beta _3}){\left[ {\begin{array}{l} {\frac{1}{{\sqrt 2 }}}&0&{ - \frac{1}{4}}\\\\ 0&{\frac{1}{{\sqrt 2 }}}&{\frac{1}{4}}\\\\ 0&0&{\frac{1}{2}} \end{array}} \right]^{ - 1}}\\\\ \;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \left[ {\begin{array}{l} {\frac{1}{{\sqrt 2 }}}&{\frac{1}{{\sqrt 2 }}}&0\\\\ {\frac{1}{{\sqrt 2 }}}&{ - \frac{1}{{\sqrt 2 }}}&0\\\\ 0&0&1 \end{array}} \right]\left[ {\begin{array}{l} {\sqrt 2 }&0&{\frac{1}{{\sqrt 2 }}}\\\\ 0&{\sqrt 2 }&{ - \frac{1}{{\sqrt 2 }}}\\\\ 0&0&2 \end{array}} \right]\\\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = QR \end{array}

從上例可以看出,矩陣的QR實際上就是施密特正交化的特性,施密特正交化可以得到一個上三角矩陣和一個正交矩陣,所以矩陣可以QR分解。

Givens變換法
Givens變換,即初等旋轉變換,正交變換的一種,對應的初等旋轉矩陣形式如下,
Rij=[11cosθ00sinθ010010sinθ00cosθ11]ij{R_{ij}} = \left[ {\begin{array}{l} 1&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}\\ {}& \ddots &{}&{}&{}&{}&{}&{}&{}&{}&{}\\ {}&{}&1&{}&{}&{}&{}&{}&{}&{}&{}\\ {}&{}&{}&{\cos \theta }&0& \cdots &0&{\sin \theta }&{}&{}&{}\\ {}&{}&{}&0&1&{}&{}&{}&{}&{}&{}\\ {}&{}&{}& \vdots & \vdots &{}& \vdots & \vdots &{}&{}&{}\\ {}&{}&{}&0&0& \cdots &1&0&{}&{}&{}\\ {}&{}&{}&{ - \sin \theta }&0& \cdots &0&{\cos \theta }&{}&{}&{}\\ {}&{}&{}&{}&{}&{}&{}&{}&1&{}&{}\\ {}&{}&{}&{}&{}&{}&{}&{}&{}& \ddots &{}\\ {}&{}&{}&{}&{}&{}&{}&{}&{}&{}&1 \end{array}} \right]\begin{array}{l} {}\\ {}\\ {}\\ { \leftarrow i行}\\ {}\\ {}\\ {}\\ { \leftarrow j行}\\ {}\\ {}\\ {} \end{array}
初等變換矩陣在矩陣化簡方面有很好的應用,即,若以RijR_{ij}左乘一個矩陣A,並且其中的s和c按如下方式取值,
s=xjxi2+xj2,c=xixi2+xj2s = \frac{{{x_j}}}{{\sqrt {x_i^2 + x_j^{\rm{2}}} }},c = \frac{{{x_i}}}{{\sqrt {x_i^2 + x_j^{\rm{2}}} }}則就可以把矩陣A的第j個分量化爲0。

舉個例子,把向量x=(1,2,3)Tx=(1,2,3)^T通過Givens變換化成與(1,0,0)T(1,0,0)^T同方向。
第一步,可以選擇把向量x中的第二項化爲0,則,
c=x1x12+x22=15s=x2x12+x22=25\begin{array}{l} c = \frac{{{x_1}}}{{\sqrt {x_1^2 + x_2^{\rm{2}}} }} = \frac{1}{{\sqrt 5 }}\\\\ s = \frac{{{x_2}}}{{\sqrt {x_1^2 + x_2^{\rm{2}}} }} = \frac{2}{{\sqrt 5 }} \end{array}
得到初等旋轉矩陣爲,
R12=[1525025150001]{R_{12}} = \left[ {\begin{array}{l} {\frac{1}{{\sqrt 5 }}}&{\frac{2}{{\sqrt 5 }}}&0\\\\ { - \frac{2}{{\sqrt 5 }}}&{\frac{1}{{\sqrt 5 }}}&0\\\\ 0&0&1 \end{array}} \right]
從而把x的第二項化爲0,即,
y=R12x=(5,0,3)Ty = {R_{12}}x = {(\sqrt 5 ,0,3)^T}
第二步,把y中的第3項化爲0,同樣,取c和s爲,
c=x1x12+x32=514s=x3x12+x32=314\begin{array}{l} {c = \frac{{{x_1}}}{{\sqrt {x_1^2 + x_3^{\rm{2}}} }} = \sqrt {\frac{5}{{14}}} }\\ {}\\ {s = \frac{{{x_3}}}{{\sqrt {x_1^2 + x_3^{\rm{2}}} }} = \frac{3}{{\sqrt {14} }}} \end{array}
得到初等旋轉矩陣爲,
R13=[51403140103140514]{R_{13}} = \left[ {\begin{array}{l} {\sqrt {\frac{5}{{14}}} }&0&{\frac{3}{{\sqrt {14} }}}\\ {}&{}&{}\\ 0&1&0\\ {}&{}&{}\\ { - \frac{3}{{\sqrt {14} }}}&0&{\sqrt {\frac{5}{{14}}} } \end{array}} \right]
這裏就把第三項化爲0,即,
z=R13y=R13R12x=(14,0,0)Tz = {R_{13}}y = {R_{13}}{R_{12}}x = {\left( {\sqrt {14} ,0,0} \right)^T}

對一個向量可以這樣化簡,那麼對於矩陣而言,矩陣可以看作是由n個列向量組成的,所以把矩陣A左乘一系列的初等旋轉矩陣,就可以把A化簡爲結構較爲簡單的上三角矩陣R。而前面已經證明了一個實非奇異的矩陣A可以進行QR分解,那麼這裏的Givens變換就能把一個矩陣A化成上三角矩陣,所以,Givens變換可以用於QR分解。

Rn1,nR2nR23R1nR12A=RQ=(Rn1,nR2nR23R1nR12)1  =(Rn1,nR2nR23R1nR12)H\begin{array}{l} {R_{n - 1,n}} \cdots {R_{2n}} \cdots {R_{23}}{R_{1n}} \cdots {R_{12}}A = R\\\\ Q = {({R_{n - 1,n}} \cdots {R_{2n}} \cdots {R_{23}}{R_{1n}} \cdots {R_{12}})^{ - 1}}\\\\ \;{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{ = }}{({R_{n - 1,n}} \cdots {R_{2n}} \cdots {R_{23}}{R_{1n}} \cdots {R_{12}})^H} \end{array}

舉個例子,用Givens方法對矩陣A=[12204191563205035]A = \left[ {\begin{array}{l} {12}&{ - 20}&{41}\\\\ 9&{ - 15}&{ - 63}\\\\ {20}&{50}&{35} \end{array}} \right]進行QR分解。

第一步,用R12R_{12}左乘A,消去第1列第2行處的元素,

c=12122+92=1215=45,s=9122+92=35c = \frac{{12}}{{\sqrt {{{12}^2} + {9^2}} }} = \frac{{12}}{{15}} = \frac{4}{5},s = \frac{9}{{\sqrt {{{12}^2} + {9^2}} }} = \frac{3}{5}故,
R12A=[4535035450001]A=[152550075205035]{R_{12}}A = \left[ {\begin{array}{l} {\frac{4}{5}}&{\frac{3}{5}}&0\\\\ { - \frac{3}{5}}&{\frac{4}{5}}&0\\\\ 0&0&1 \end{array}} \right]A = \left[ {\begin{array}{l} {15}&{ - 25}&{ - 5}\\\\ 0&0&{ - 75}\\\\ {20}&{50}&{35} \end{array}} \right]
同理,接着消去A中第1列第3個元素,
c=15152+202=1525=35,s=20152+202=45c = \frac{{15}}{{\sqrt {{{15}^2} + {{20}^2}} }} = \frac{{15}}{{25}} = \frac{3}{5},s = \frac{{20}}{{\sqrt {{{15}^2} + {{20}^2}} }} = \frac{4}{5}

A(1)=R13R12A=[3504501045035]R12A=[252525007505025]{A^{(1)}} = {R_{13}}{R_{12}}A = \left[ {\begin{array}{l} {\frac{3}{5}}&0&{\frac{4}{5}}\\\\ 0&1&0\\\\ { - \frac{4}{5}}&0&{\frac{3}{5}} \end{array}} \right]{R_{12}}A = \left[ {\begin{array}{l} {25}&{25}&{25}\\\\ 0&0&{ - 75}\\\\ 0&{50}&{25} \end{array}} \right]
這裏就把矩陣A中的第一列的第二個和第三個元素化爲0,即第一列(A(1)A^{(1)})化簡完成,下面開始第二列的化簡。

第二步,進行第二列的化簡,即把第二列的第三個元素化爲0,
c=002+502=0,s=5002+502=1c = \frac{0}{{\sqrt {{0^2} + {{50}^2}} }} = 0,s = \frac{{50}}{{\sqrt {{0^2} + {{50}^2}} }} = 1故,
R23=[100001010]{R_{23}} = \left[ {\begin{array}{l} 1&0&0\\ 0&0&1\\ 0&{ - 1}&0 \end{array}} \right]
A(2)=R23A(1)=[252525050250075]{A^{(2)}} = {R_{23}}{A^{(1)}} = \left[ {\begin{array}{l} {25}&{25}&{25}\\\\ 0&{50}&{25}\\\\ 0&0&{75} \end{array}} \right]

這裏的A(2)A^{(2)}就是上三角矩陣,即QR分解裏的R,而Q的求解如下,
Q=(R23R13R12)1=[12259252025162512251525152520250]1=[12259252025162512251525152520250]H=[12251625152592512252025202515250]\begin{array}{l} Q = {({R_{23}}{R_{13}}{R_{12}})^{ - 1}}\\\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\left[ {\begin{array}{l} {\frac{{12}}{{25}}}&{\frac{9}{{25}}}&{\frac{{20}}{{25}}}\\\\ { - \frac{{16}}{{25}}}&{ - \frac{{12}}{{25}}}&{\frac{{15}}{{25}}}\\\\ {\frac{{15}}{{25}}}&{ - \frac{{20}}{{25}}}&0 \end{array}} \right]^{ - 1}}\\\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {\left[ {\begin{array}{l} {\frac{{12}}{{25}}}&{\frac{9}{{25}}}&{\frac{{20}}{{25}}}\\\\ { - \frac{{16}}{{25}}}&{ - \frac{{12}}{{25}}}&{\frac{{15}}{{25}}}\\\\ {\frac{{15}}{{25}}}&{ - \frac{{20}}{{25}}}&0 \end{array}} \right]^H}\\\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \left[ {\begin{array}{l} {\frac{{12}}{{25}}}&{ - \frac{{16}}{{25}}}&{\frac{{15}}{{25}}}\\\\ {\frac{9}{{25}}}&{ - \frac{{12}}{{25}}}&{ - \frac{{20}}{{25}}}\\\\ {\frac{{20}}{{25}}}&{\frac{{15}}{{25}}}&0 \end{array}} \right] \end{array}
從上例可以看出,Givens方法需要作n(n1)2\frac{{n(n - 1)}}{2}個初等旋轉矩陣的乘積,當nn比較大時,計算量較大。

Housholder變換法

Housholder變換,即鏡像變換,正交變換的一種,對應的初等反射矩陣形式如下,H=I2ωωTH = I - 2\omega {\omega ^T}其中ω\omega表示某單位向量。

其鏡面關係爲:若η=Hξ\eta = H\xi,則向量η\eta和向量ξ\xi關於某單位向量ω\omega的正交軸ll鏡像對稱。

用初等反射矩陣也可以完成對矩陣的簡化,其簡化原理用的是如下定理:
鏡像變換可以使任何非零向量ξ\xi變成與給定單位向量aa同方向的向量η\eta
用這一定理可以構造出H裏單位向量ω\omega如下,
ω=ξξaξξa\omega = \frac{{\xi - \left| \xi \right|a}}{{\left| {\xi - \left| \xi \right|a} \right|}}那麼,可以通過構造ω\omega的方法來簡化矩陣A,使其變爲一個上三角陣。

舉個例子,用鏡像變化把向量ξ=(0,3,0,4)T\xi=(0,3,0,4)^T變爲與向量e1=(1,0,0,0)Te_1=(1,0,0,0)^T同方向的向量。
首先就是構造ω\omega
ω=ξξe1ξξe1=(5,3,0,4)T(5,3,0,4)T=(12,352,0,452)T\omega = \frac{{\xi - \left| \xi \right|{e_1}}}{{\left| {\xi - \left| \xi \right|{e_1}} \right|}} = \frac{{{{( - 5,3,0,4)}^T}}}{{\left| {{{( - 5,3,0,4)}^T}} \right|}} = {( - \frac{1}{{\sqrt 2 }},\frac{3}{{5\sqrt 2 }},0,\frac{4}{{5\sqrt 2 }})^T}則初等反射矩陣H爲,
H=I2ωωT=[0350453516250122500104512250925]H = I - 2\omega {\omega ^T} = \left[ {\begin{array}{l} 0&{\frac{3}{5}}&0&{\frac{4}{5}}\\\\ {\frac{3}{5}}&{\frac{{16}}{{25}}}&0&{ - \frac{{12}}{{25}}}\\\\ 0&0&1&0\\\\ {\frac{4}{5}}&{ - \frac{{12}}{{25}}}&0&{\frac{9}{{25}}} \end{array}} \right]
從而有,
η=Hξ=(5,0,0,0)T\eta = H\xi = {(5,0,0,0)^T}

上例,是使用鏡像變換完成了對向量的化簡。那麼,對於矩陣而言,同樣把矩陣看成是一組列向量的組合,那麼每次求解只完成一列列向量的簡化。

而與Given變換不同的是,對於每一列列向量的簡化,其對應的反射矩陣H只要求解一次,所以,經過n1n-1次左乘初等反射矩陣H就可以化成一個上三角陣,計算量大約是Givens變換的一半,即,
H(n1)H(n2)H(1)A=A(n)=RQ=(H(n1)H(n2)H(1))1\begin{array}{l} {H^{(n - 1)}}{H^{(n - 2)}} \cdots {H^{(1)}}A = {A^{(n)}} = R\\\\ Q = {({H^{(n - 1)}}{H^{(n - 2)}} \cdots {H^{(1)}})^{ - 1}} \end{array}

舉個例子,用Housholder變換法對矩陣A=[221122212]A = \left[ {\begin{array}{l} 2&2&1\\ 1&2&2\\ 2&1&2 \end{array}} \right]進行QR分解。

第一步,完成對第一列的簡化。
因爲α1(1)=(2,1,2)T0\alpha _1^{(1)} = {(2,1,2)^T} \ne 0,作單位向量,
ω(1)=α1(1)α1(1)e1α1(1)α1(1)e1=(2,1,2)T3e1(2,1,2)T3e1=(16,16,26)T{\omega ^{(1)}} = \frac{{\alpha _1^{(1)} - \left| {\alpha _1^{(1)}} \right|{e_1}}}{{\left| {\alpha _1^{(1)} - \left| {\alpha _1^{(1)}} \right|{e_1}} \right|}} = \frac{{{{(2,1,2)}^T} - 3{e_1}}}{{\left| {{{(2,1,2)}^T} - 3{e_1}} \right|}} = {( - \frac{1}{{\sqrt 6 }},\frac{1}{{\sqrt 6 }},\frac{2}{{\sqrt 6 }})^T}則反射矩陣H爲,
H(1)=I2ω(1)ω(1)T=[231323132323232313]{H^{(1)}} = I - 2{\omega ^{(1)}}{\omega ^{(1)T}} = \left[ {\begin{array}{l} {\frac{2}{3}}&{\frac{1}{3}}&{\frac{2}{3}}\\\\ {\frac{1}{3}}&{\frac{2}{3}}&{ - \frac{2}{3}}\\\\ {\frac{2}{3}}&{ - \frac{2}{3}}&{ - \frac{1}{3}} \end{array}} \right]從而得,
H(1)A=[383830431301343]=[3838300A2]{H^{(1)}}A = \left[ {\begin{array}{l} 3&{\frac{8}{3}}&{\frac{8}{3}}\\\\ 0&{\frac{4}{3}}&{\frac{1}{3}}\\\\ 0&{ - \frac{1}{3}}&{ - \frac{4}{3}} \end{array}} \right] = \left[ {\begin{array}{l} 3&{\begin{array}{l} {\frac{8}{3}}&{\frac{8}{3}} \end{array}}\\\\ {\begin{array}{l} 0\\\\ 0 \end{array}}&{{A_2}} \end{array}} \right]
第二步,簡化第二列。此時關注的不是矩陣H(1)AH^{(1)}A,而是A2A_2
則,
ω^(2)=(43,13)T(43,13)Te1(43,13)T(43,13)Te1=(41734817,134817)T{\hat \omega ^{(2)}} = \frac{{{{(\frac{4}{3}, - \frac{1}{3})}^T} - \left| {{{(\frac{4}{3}, - \frac{1}{3})}^T}} \right|{e_1}}}{{\left| {{{(\frac{4}{3}, - \frac{1}{3})}^T} - \left| {{{(\frac{4}{3}, - \frac{1}{3})}^T}} \right|{e_1}} \right|}} = {\left( {\frac{{4 - \sqrt {17} }}{{\sqrt {34 - 8\sqrt {17} } }}, - \frac{1}{{\sqrt {34 - 8\sqrt {17} } }}} \right)^T}
那麼有,
H^(2)=I2ω^(2)ω^(2)T=[12(417)2348172(417)348172(417)348171234817]{\hat H^{(2)}} = I - 2{\hat \omega ^{(2)}}{\hat \omega ^{(2)T}} = \left[ {\begin{array}{l} {1 - \frac{{2{{(4 - \sqrt {17} )}^2}}}{{34 - 8\sqrt {17} }}}&{\frac{{2(4 - \sqrt {17} )}}{{34 - 8\sqrt {17} }}}\\\\ {\frac{{2(4 - \sqrt {17} )}}{{34 - 8\sqrt {17} }}}&{1 - \frac{2}{{34 - 8\sqrt {17} }}} \end{array}} \right]從而對應的反射矩陣爲,
H(2)=[100H^(2)]=[100012(417)2348172(417)3481702(417)348171234817]{H^{(2)}} = \left[ {\begin{array}{l} 1&0\\\\ 0&{{{\hat H}^{(2)}}} \end{array}} \right] = \left[ {\begin{array}{l} 1&0&0\\\\ 0&{1 - \frac{{2{{(4 - \sqrt {17} )}^2}}}{{34 - 8\sqrt {17} }}}&{\frac{{2(4 - \sqrt {17} )}}{{34 - 8\sqrt {17} }}}\\\\ 0&{\frac{{2(4 - \sqrt {17} )}}{{34 - 8\sqrt {17} }}}&{1 - \frac{2}{{34 - 8\sqrt {17} }}} \end{array}} \right]則有,
H(2)H(1)A=[383830173817510051717]=R{H^{(2)}}{H^{(1)}}A = \left[ {\begin{array}{l} 3&{\frac{8}{3}}&{\frac{8}{3}}\\\\ 0&{\frac{{\sqrt {17} }}{3}}&{\frac{{8\sqrt {17} }}{{51}}}\\\\ 0&0&{\frac{{5\sqrt {17} }}{{17}}} \end{array}} \right] = R
Q的求解如下,
Q=(H(2)H(1))1=[2321751317171310175121717237171721717]Q = {({H^{(2)}}{H^{(1)}})^{ - 1}} = \left[ {\begin{array}{l} {\frac{2}{3}}&{\frac{{2\sqrt {17} }}{{51}}}&{ - \frac{{3\sqrt {17} }}{{17}}}\\\\ {\frac{1}{3}}&{\frac{{10\sqrt {17} }}{{51}}}&{\frac{{2\sqrt {17} }}{{17}}}\\\\ {\frac{2}{3}}&{ - \frac{{7\sqrt {17} }}{{17}}}&{\frac{{2\sqrt {17} }}{{17}}} \end{array}} \right]

附:
從實用性角度考慮,一般不用施密特正交化進行QR分解,用Givens變換法和Housholder變換法較多,但Givens變換法需要n(n1)2\frac{{n(n - 1)}}{2}次左乘初等旋轉矩陣,計算量大,而Housholder變換法只需n1n-1次左乘初等反射矩陣,計算量小是Housholder變換法的優勢。但在稀疏矩陣的QR分解上,用Givens方法求解仍有方便之處。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章