第十一章 曲線積分與曲面積分

本章將把積分概念推廣到積分範圍爲一段曲線弧或一片曲面的情形(這樣推廣後的積分稱爲曲線積分和曲面積分),並闡明有關這兩種積分的一些基本內容。——高等數學同濟版

習題11-1 對弧長的曲線積分

  本節主要介紹了對弧長的曲線積分的基本計算。

5.設螺線形彈簧一圈的方程爲x=acostx=a\cos ty=asinty=a\sin tz=ktz=kt,其中0t2π0\leqslant t\leqslant2\pi,它的線密度ρ(x,y,z)=x2+y2+z2\rho(x,y,z)=x^2+y^2+z^2,求:

(2)它的質心。

  設質心位置爲(x,y,z)(\overline{x},\overline{y},\overline{z})
M=Lρ(x,y,z)ds=Lx2+y2+z2ds=02π(a2+k2t2)a2+k2dt=23πa2+k2(3a2+4π2k2),x=1MLxρ(x,y,z)ds=1MLx(x2+y2+z2)ds=1M02πacost(a2+k2t2)a2+k2dt=aa2+k2M02π(a2+k2t2)acostdt. \begin{aligned} M&=\displaystyle\int\limits_{L}\rho(x,y,z)\mathrm{d}s=\displaystyle\int\limits_{L}x^2+y^2+z^2\mathrm{d}s\\ &=\displaystyle\int^{2\pi}_0(a^2+k^2t^2)\sqrt{a^2+k^2}\mathrm{d}t\\ &=\cfrac{2}{3}\pi\sqrt{a^2+k^2}(3a^2+4\pi^2k^2), \end{aligned}\\ \begin{aligned} \overline{x}&=\cfrac{1}{M}\displaystyle\int\limits_{L}x\rho(x,y,z)\mathrm{d}s=\cfrac{1}{M}\displaystyle\int\limits_{L}x(x^2+y^2+z^2)\mathrm{d}s\\ &=\cfrac{1}{M}\displaystyle\int^{2\pi}_0a\cos t(a^2+k^2t^2)\cdot\sqrt{a^2+k^2}\mathrm{d}t\\ &=\cfrac{a\sqrt{a^2+k^2}}{M}\displaystyle\int^{2\pi}_0(a^2+k^2t^2)a\cos t\mathrm{d}t. \end{aligned}
  由於
02π(a2+k2t2)acostdt=[(a2+k2t2)sint]02π02πsint2k2tdt=[2k2tcost]02π02π2k2costdt=4πk2. \begin{aligned} \displaystyle\int^{2\pi}_0(a^2+k^2t^2)a\cos t\mathrm{d}t&=[(a^2+k^2t^2)\sin t]\biggm\vert^{2\pi}_0-\displaystyle\int^{2\pi}_0\sin t\cdot2k^2t\mathrm{d}t\\ &=[2k^2t\cos t]\biggm\vert^{2\pi}_0-\displaystyle\int^{2\pi}_02k^2\cos t\mathrm{d}t=4\pi k^2. \end{aligned}
  因此
x=aa2+k24πk223πa2+k2(3a2+4π2k2)=6ak23a2+4π2k2. \overline{x}=\cfrac{a\sqrt{a^2+k^2}\cdot4\pi k^2}{\cfrac{2}{3}\pi\sqrt{a^2+k^2}(3a^2+4\pi^2k^2)}=\cfrac{6ak^2}{3a^2+4\pi^2k^2}.
  類似的,
y=1MLy(x2+y2+z2)ds=aa2+k2M02π(a2+k2t2)asintdt=aa2+k2(4πk2)M=6ak23a2+4π2k2.z=1MLz(x2+y2+z2)ds=ka2+k2M02π(a2+k2t2)asintdt=ka2+k2(2a2π2+4πk2)M=3πk(a2+4k2π4)3a2+4π2k2. \begin{aligned} \overline{y}&=\cfrac{1}{M}\displaystyle\int\limits_{L}y(x^2+y^2+z^2)\mathrm{d}s=\cfrac{a\sqrt{a^2+k^2}}{M}\displaystyle\int^{2\pi}_0(a^2+k^2t^2)a\sin t\mathrm{d}t\\ &=\cfrac{a\sqrt{a^2+k^2}\cdot(-4\pi k^2)}{M}=\cfrac{-6ak^2}{3a^2+4\pi^2k^2}. \end{aligned}\\ \begin{aligned} \overline{z}&=\cfrac{1}{M}\displaystyle\int\limits_{L}z(x^2+y^2+z^2)\mathrm{d}s=\cfrac{k\sqrt{a^2+k^2}}{M}\displaystyle\int^{2\pi}_0(a^2+k^2t^2)a\sin t\mathrm{d}t\\ &=\cfrac{k\sqrt{a^2+k^2}\cdot(2a^2\pi^2+4\pi k^2)}{M}=\cfrac{3\pi k(a^2+4k^2\pi^4)}{3a^2+4\pi^2k^2}. \end{aligned}
這道題主要利用了參數方程的曲線積分求解

習題11-2 對座標的曲線積分

  本節主要介紹了對座標的曲線積分的計算。

8.設爲曲線x=tx=ty=t2y=t^2z=t3z=t^3上相應於tt00變到11的曲線弧。把對座標的曲線積分ΓPdx+Qdy+Rdz\displaystyle\int\limits_{\varGamma}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z化成對弧長的曲線積分。

  dxdt=1\cfrac{\mathrm{d}x}{\mathrm{d}t}=1dydt=2t=2x\cfrac{\mathrm{d}y}{\mathrm{d}t}=2t=2xdzdt=3t2=3y\cfrac{\mathrm{d}z}{\mathrm{d}t}=3t^2=3y,注意到參數tt由小變到大,因此Γ\varGamma的切向量的方向餘弦爲
cosα=x(t)x2(t)+y2(t)+z2(t)=11+4x2+9y2,cosβ=y(t)x2(t)+y2(t)+z2(t)=2x1+4x2+9y2,cosγ=z(t)x2(t)+y2(t)+z2(t)=3y1+4x2+9y2, \cos\alpha=\cfrac{x'(t)}{\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}}=\cfrac{1}{\sqrt{1+4x^2+9y^2}},\\ \cos\beta=\cfrac{y'(t)}{\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}}=\cfrac{2x}{\sqrt{1+4x^2+9y^2}},\\ \cos\gamma=\cfrac{z'(t)}{\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}}=\cfrac{3y}{\sqrt{1+4x^2+9y^2}},\\
  從而
ΓPdx+Qdy+Rdz=ΓP+2xQ+3yR1+4x2+9y2ds. \displaystyle\int\limits_{\varGamma}P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z=\displaystyle\int\limits_{\varGamma}\cfrac{P+2xQ+3yR}{\sqrt{1+4x^2+9y^2}}\mathrm{d}s.
這道題主要利用曲線積分兩種形式之間的轉化求解

習題11-3 格林公式及其應用

  本節主要介紹了格林公式的解法及其應用。

4.確定閉曲線CC,使曲線積分C(x+y33)dx+(y+x23x3)dy\displaystyle\oint\limits_{C}\left(x+\cfrac{y^3}{3}\right)\mathrm{d}x+\left(y+x-\cfrac{2}{3}x^3\right)\mathrm{d}y達到最大值。

  記DDCC所圍成的平面有界閉區域,CCDD的正向邊界曲線,則由格林公式
C(x+y33)dx+(y+x23x3)dy=D[(12x2)y2]dxdy. \displaystyle\oint\limits_{C}\left(x+\cfrac{y^3}{3}\right)\mathrm{d}x+\left(y+x-\cfrac{2}{3}x^3\right)\mathrm{d}y=\displaystyle\iint\limits_{D}[(1-2x^2)-y^2]\mathrm{d}x\mathrm{d}y.
  要使上式右端的二重積分達到最大值,DD應包含所有使被積函數12x2y21-2x^2-y^2大於零的點,而不包含使被積函數小於零的點。因此DD應爲由橢圓2x2+y2=12x^2+y^2=1所圍成的閉區域。這就是說,當CC爲取逆時針方向的橢圓2x2+y2=12x^2+y^2=1時,所給的曲線積分達到最大值。
這道題主要利用了格林公式的定義求解

5.設nn邊形的nn個頂點按逆時針方向依次爲M1(x1,y1),M2(x2,y2),Mn(xn,yn),M_1(x_1,y_1),M_2(x_2,y_2),\cdots M_n(x_n,y_n),。試利用曲線積分證明此邊形的面積爲A=12[(x1y2x2y1)+(x2y3x3y2)++(xn1ynxnyn1)+(xny1x1yn)].A=\cfrac{1}{2}[(x_1y_2-x_2y_1)+(x_2y_3-x_3y_2)+\cdots+(x_{n-1}y_n-x_ny_{n-1})+(x_ny_1-x_1y_n)].

  nn邊形的正向邊界LL由有向線段M1M2,M2M3,,Mn1Mn,MnM1,M_1M_2,M_2M_3,\cdots,M_{n-1}M_n,M_nM_1,組成。
  有向線段M1M2M_1M_2的參數方程爲x=x1+(x2x1)tx=x_1+(x_2-x_1)ty=y1+(y2y1)ty=y_1+(y_2-y_1)ttt00變到11,於是
M1M2xdyydx=01{[x1+(x2x1)t](y2y1)[y1+(y2y1)t](x2x1)}dt=01[x1(y2y1)y1(x2x1)]dt=01(x1y2x2y1)dt=x1y2x2y1. \begin{aligned} \displaystyle\int\limits_{M_1M_2}x\mathrm{d}y-y\mathrm{d}x&=\displaystyle\int^1_0\{[x_1+(x_2-x_1)t](y_2-y_1)-[y_1+(y_2-y_1)t](x_2-x_1)\}\mathrm{d}t\\ &=\displaystyle\int^1_0[x_1(y_2-y_1)-y_1(x_2-x_1)]\mathrm{d}t\\ &=\displaystyle\int^1_0(x_1y_2-x_2y_1)\mathrm{d}t=x_1y_2-x_2y_1. \end{aligned}
  同理可求得
M2M3xdyydx=x2y3x3y2,,Mn1Mnxdyydx=xn1ynxnyn1,MnM1xdyydx=xny1x1yn. \begin{aligned} \displaystyle\int\limits_{M_2M_3}x\mathrm{d}y-y\mathrm{d}x&=x_2y_3-x_3y_2,\cdots,\\ \displaystyle\int\limits_{M_{n-1}M_n}x\mathrm{d}y-y\mathrm{d}x&=x_{n-1}y_n-x_ny_{n-1},\\ \displaystyle\int\limits_{M_nM_1}x\mathrm{d}y-y\mathrm{d}x&=x_ny_1-x_1y_n. \end{aligned}
  因此nn邊形的面積
A=12Lxdyydx=12(M1M2+M2M3++Mn1Mn+MnM1)xdyydx=12[(x1y2x2y1)+(x2y3x3y2)++(xn1ynxnyn1)+(xny1x1yn)]. \begin{aligned} A&=\cfrac{1}{2}\displaystyle\oint\limits_{L}x\mathrm{d}y-y\mathrm{d}x=\cfrac{1}{2}\left(\quad\displaystyle\int\limits_{M_1M_2}+\displaystyle\int\limits_{M_2M_3}+\cdots+\displaystyle\int\limits_{M_{n-1}M_n}+\displaystyle\int\limits_{M_nM_1}\quad\right)x\mathrm{d}y-y\mathrm{d}x\\ &=\cfrac{1}{2}[(x_1y_2-x_2y_1)+(x_2y_3-x_3y_2)+\cdots+(x_{n-1}y_n-x_ny_{n-1})+(x_ny_1-x_1y_n)]. \end{aligned}
這道題主要利用了直線的參數方程求解

11.確定常數λ\lambda,使在右半平面x>0x>0內的向量A(x,y)=2xy(x4+y2)λix2(x4+y2)λj\bm{A}(x,y)=2xy(x^4+y^2)^\lambda\bm{i}-x^2(x^4+y^2)^\lambda\bm{j}爲某二元函數u(x,y)u(x,y)的梯度,並求u(x,y)u(x,y)

  在單連通區域GG內,若P(x,y),Q(x,y)P(x,y),Q(x,y)具有一階連續偏導數,則向量A(x,y)=2xy(x4+y2)λix2(x4+y2)λj\bm{A}(x,y)=2xy(x^4+y^2)^\lambda\bm{i}-x^2(x^4+y^2)^\lambda\bm{j}爲某二元函數u(x,y)u(x,y)的梯度(此條件相當於P(x,y)dx+Q(x,y)dyP(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}yu(x,y)u(x,y)的全微分)的充分必要條件是Py=Qx\cfrac{\partial P}{\partial y}=\cfrac{\partial Q}{\partial x}GG內恆成立。
  本題中P(x,y)=2xy(x4+y2)λP(x,y)=2xy(x^4+y^2)^\lambdaQ(x,y)=x2(x4+y2)λQ(x,y)=x^2(x^4+y^2)^\lambda
Py=2x(x4+y2)λ+2λxy(x4+y2)λ12y,Qx=2x(x4+y2)λx2λ(x4+y2)λ14x3. \cfrac{\partial P}{\partial y}=2x(x^4+y^2)^\lambda+2\lambda xy(x^4+y^2)^{\lambda-1}\cdot2y,\\ \cfrac{\partial Q}{\partial x}=-2x(x^4+y^2)^\lambda-x^2\lambda(x^4+y^2)^{\lambda-1}\cdot4x^3.
  由等式Qx=Py\cfrac{\partial Q}{\partial x}=\cfrac{\partial P}{\partial y}得到
4x(x4+y2)λ(1+λ)=0, 4x(x^4+y^2)^\lambda(1+\lambda)=0,
  由於4x(x4+y2)λ>04x(x^4+y^2)^\lambda>0,故λ=1\lambda=-1,即A=2xyix2jx4+y2\bm{A}=\cfrac{2xy\bm{i}-x^2\bm{j}}{x^4+y^2}
  在半平面x>0x>0內,取(x0,y0)=(1,0)(x_0,y_0)=(1,0),則得
u(x,y)=1x2x0x4+02dx0yx2x4+y2dy=arctanyx2. \begin{aligned} u(x,y)&=\displaystyle^x_1\cfrac{2x\cdot0}{x^4+0^2}\mathrm{d}x-\displaystyle^y_0\cfrac{x^2}{x^4+y^2}\mathrm{d}y\\ &=-\arctan\cfrac{y}{x^2}. \end{aligned}
這道題主要利用了梯度的定義求解

習題11-4 對面積的曲面積分

  本節主要介紹了對面積的曲面積分的計算方法。

4.計算曲面積分Σf(x,y,z)dS\displaystyle\iint\limits_{\Sigma}f(x,y,z)\mathrm{d}S,其中Σ\Sigma爲拋物面z=2(x2+y2)z=2-(x^2+y^2)xOyxOy面上方的部分,f(x,y,z)f(x,y,z)分別如下:

(2)f(x,y,z)=x2+y2;f(x,y,z)=x^2+y^2;


Σ(x2+y2)dS=Dxy(x2+y2)1+4x2+4y2dxdy=極座標Dxyρ21+4ρ2ρdρdθ=02πdθ02ρ31+4ρ2dρ=ρ=12tant2π1160arctan22sec3ttan3tdt=π80arctan22sec2t(sec2t1)d(sect)=π85963=14930π. \begin{aligned} \displaystyle\iint\limits_{\Sigma}(x^2+y^2)\mathrm{d}S&=\displaystyle\iint\limits_{D_{xy}}(x^2+y^2)\sqrt{1+4x^2+4y^2}\mathrm{d}x\mathrm{d}y\\ &\xlongequal{\text{極座標}}\displaystyle\iint\limits_{D_{xy}}\rho^2\sqrt{1+4\rho^2}\rho\mathrm{d}\rho\mathrm{d}\theta\\ &=\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^{\sqrt{2}}_0\rho^3\sqrt{1+4\rho^2}\mathrm{d}\rho\\ &\xlongequal{\rho=\cfrac{1}{2}\tan t}2\pi\cdot\cfrac{1}{16}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^3t\cdot\tan^3t\mathrm{d}t\\ &=\cfrac{\pi}{8}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^2t(\sec^2t-1)\mathrm{d}(\sec t)=\cfrac{\pi}{8}\cdot\cfrac{596}{3}=\cfrac{149}{30}\pi. \end{aligned}
這道題主要利用了換元法求解

(3)f(x,y,z)=3z.f(x,y,z)=3z.


Σ3zdS=3Dxy[2(x2+y2)]1+4x2+4y2dxdy=極座標3Dxy(2ρ2)1+4ρ2ρdρdθ=302πdθ02(2ρ2)1+4ρ2ρdρ=ρ=12tant6π(120arctan22sec3ttantdt1160arctan22sec3ttan3tdt)=6π[120arctan22sec2td(sect)1160arctan22sec2t(sec2t1)d(sect)]=6π(13314960)=11110π. \begin{aligned} \displaystyle\iint\limits_{\Sigma}3z\mathrm{d}S&=3\displaystyle\iint\limits_{D_{xy}}[2-(x^2+y^2)]\sqrt{1+4x^2+4y^2}\mathrm{d}x\mathrm{d}y\\ &\xlongequal{\text{極座標}}3\displaystyle\iint\limits_{D_{xy}}(2-\rho^2)\sqrt{1+4\rho^2}\rho\mathrm{d}\rho\mathrm{d}\theta\\ &=3\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^{\sqrt{2}}_0(2-\rho^2)\sqrt{1+4\rho^2}\rho\mathrm{d}\rho\\ &\xlongequal{\rho=\cfrac{1}{2}\tan t}6\pi\left(\cfrac{1}{2}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^3t\cdot\tan t\mathrm{d}t-\cfrac{1}{16}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^3t\cdot\tan^3t\mathrm{d}t\right)\\ &=6\pi\left[\cfrac{1}{2}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^2t\mathrm{d}(\sec t)-\cfrac{1}{16}\displaystyle\int^{\arctan2\sqrt{2}}_0\sec^2t(\sec^2t-1)\mathrm{d}(\sec t)\right]\\ &=6\pi\left(\cfrac{13}{3}-\cfrac{149}{60}\right)=\cfrac{111}{10}\pi. \end{aligned}
這道題主要利用了換元法求解

6.計算下列對面積的曲面積分:

(4)Σ(xy+yz+zx)dS\displaystyle\iint\limits_{\Sigma}(xy+yz+zx)\mathrm{d}S,其中Σ\Sigma爲錐面z=x2+y2z=\sqrt{x^2+y^2}被柱面x2+y2=2axx^2+y^2=2ax所截得的有限部分。

  Σ\SigmaxOyxOy面上的投影區域DxyD_{xy}爲圓域x2+y22axx^2+y^2\leqslant2ax。由於Σ\Sigma關於zOxzOx面對稱,而函數xyxyyzyz關於yy均爲奇函數,故
ΣxydS=.0,ΣyzdS=0. \displaystyle\iint\limits_{\Sigma}xy\mathrm{d}S=.0,\quad\displaystyle\iint\limits_{\Sigma}yz\mathrm{d}S=0.
  於是
Σ(xy+yz+zx)dS=ΣzxdS=Dxyxx2+y21+x2+y2x2+y2dxdy=2Dxyxx2+y2dxdy=極座標2π2π2dθ02acosθρcosθρρdρ=82a40π2cos5θdθ=82a44523=64152a4. \begin{aligned} \displaystyle\iint\limits_{\Sigma}(xy+yz+zx)\mathrm{d}S&=\displaystyle\iint\limits_{\Sigma}zx\mathrm{d}S\\ &=\displaystyle\iint\limits_{D_{xy}}x\sqrt{x^2+y^2}\sqrt{1+\cfrac{x^2+y^2}{x^2+y^2}}\mathrm{d}x\mathrm{d}y\\ &=\sqrt{2}\displaystyle\iint\limits_{D_{xy}}x\sqrt{x^2+y^2}\mathrm{d}x\mathrm{d}y\\ &\xlongequal{\text{極座標}}\sqrt{2}\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\mathrm{d}\theta\displaystyle\int^{2a\cos\theta}_0\rho\cos\theta\cdot\rho\cdot\rho\mathrm{d}\rho\\ &=8\sqrt{2}a^4\displaystyle\int^{\frac{\pi}{2}}_0\cos^5\theta\mathrm{d}\theta\\ &=8\sqrt{2}a^4\cdot\cfrac{4}{5}\cdot\cfrac{2}{3}=\cfrac{64}{15}\sqrt{2}a^4. \end{aligned}
這道題主要利用了被積函數和積分區域的對稱性求解

習題11-5 對座標的曲面積分

  本節主要介紹了對座標的曲面積分的解法。

3.計算下列對座標積分的曲面積分:

(3)Σ[f(x,y,z)+x]dydz+[2f(x,y,z)+y]dzdx+[f(x,y,z)+z]dxdy\displaystyle\iint\limits_{\Sigma}[f(x,y,z)+x]\mathrm{d}y\mathrm{d}z+[2f(x,y,z)+y]\mathrm{d}z\mathrm{d}x+[f(x,y,z)+z]\mathrm{d}x\mathrm{d}y,其中f(x,y,z)f(x,y,z)爲連續函數,Σ\Sigma是平面xy+z=1x-y+z=1在第四卦限部分的上側;

  在Σ\Sigma上,z=1x+yz=1-x+y。由於Σ\Sigma取上側,故Σ\Sigma在任一點處的單位法向量爲
n=11+zx2+zy2(zx,zy,1)=13(1,1,1). \bm{n}=\cfrac{1}{\sqrt{1+z^2_x+z^2_y}}(-z_x,-z_y,1)=\cfrac{1}{\sqrt{3}}(1,-1,1).
  由兩類曲面積分之間的聯繫,可得
原式=Σ[(f+x)cosα+(2f+y)cosβ+(f+z)cosγ]dS=13Σ[(f+x)(2f+y)+(f+z)cosγ]dS=13Σ(xy+z)dS=13ΣdS=13(Σ的面積)=1332=12. \begin{aligned} \text{原式}&=\displaystyle\iint\limits_{\Sigma}[(f+x)\cos\alpha+(2f+y)\cos\beta+(f+z)\cos\gamma]\mathrm{d}S\\ &=\cfrac{1}{\sqrt{3}}\displaystyle\iint\limits_{\Sigma}[(f+x)-(2f+y)+(f+z)\cos\gamma]\mathrm{d}S\\ &=\cfrac{1}{\sqrt{3}}\displaystyle\iint\limits_{\Sigma}(x-y+z)\mathrm{d}S=\cfrac{1}{\sqrt{3}}\displaystyle\iint\limits_{\Sigma}\mathrm{d}S\\ &=\cfrac{1}{\sqrt{3}}\cdot(\Sigma\text{的面積})=\cfrac{1}{\sqrt{3}}\cdot\cfrac{\sqrt{3}}{2}=\cfrac{1}{2}. \end{aligned}
這道題主要利用了曲面積分的定義式積分求解

習題11-6 高斯公式 通量與散度

   本節主要介紹了高斯公式的應用以及通量與散度的計算。

4.設u(x,y,z),v(x,y,z)u(x,y,z),v(x,y,z)是兩個定義在閉區域Ω\varOmega上的具有二階連續偏導數的函數,un,vn\cfrac{\partial u}{\partial n},\cfrac{\partial v}{\partial n}依次表示u(x,y,z),v(x,y,z)u(x,y,z),v(x,y,z)沿Σ\Sigma的外法線方向的方向導數。證明:Ω(uΔvvΔu)dxdydz=Σ(uvnvun)dS.\displaystyle\iiint\limits_{\varOmega}(u\varDelta v-v\varDelta u)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\displaystyle\oiint\limits_{\Sigma}\left(u\cfrac{\partial v}{\partial n}-v\cfrac{\partial u}{\partial n}\right)\mathrm{d}S.其中Σ\Sigma是空間閉區域Ω\varOmega的整個邊界曲面。這個公式叫作格林第二公式

  由格林第一公式知:
ΩuΔvdxdydz=ΣuvndSΩ(uxvx+uyvy+uzvz). \displaystyle\iiint\limits_{\varOmega}u\varDelta v\mathrm{d}x\mathrm{d}y\mathrm{d}z=\displaystyle\oiint\limits_{\Sigma}u\cfrac{\partial v}{\partial n}\mathrm{d}S-\displaystyle\oiint\limits_{\varOmega}\left(\cfrac{\partial u}{\partial x}\cfrac{\partial v}{\partial x}+\cfrac{\partial u}{\partial y}\cfrac{\partial v}{\partial y}+\cfrac{\partial u}{\partial z}\cfrac{\partial v}{\partial z}\right).
  在此公式中將函數uuvv交換位置,得
ΩvΔudxdydz=ΣvundSΩ(uxvx+uyvy+uzvz). \displaystyle\iiint\limits_{\varOmega}v\varDelta u\mathrm{d}x\mathrm{d}y\mathrm{d}z=\displaystyle\oiint\limits_{\Sigma}v\cfrac{\partial u}{\partial n}\mathrm{d}S-\displaystyle\oiint\limits_{\varOmega}\left(\cfrac{\partial u}{\partial x}\cfrac{\partial v}{\partial x}+\cfrac{\partial u}{\partial y}\cfrac{\partial v}{\partial y}+\cfrac{\partial u}{\partial z}\cfrac{\partial v}{\partial z}\right).
  將上面兩個式子相減即得
Ω(uΔvvΔu)dxdydz=Σ(uvnvun)dS. \displaystyle\iiint\limits_{\varOmega}(u\varDelta v-v\varDelta u)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\displaystyle\oiint\limits_{\Sigma}\left(u\cfrac{\partial v}{\partial n}-v\cfrac{\partial u}{\partial n}\right)\mathrm{d}S.
這道題主要利用了格林第一公式的證明求解

習題11-7 斯托克斯公式 環流量與旋度

  本節主要介紹了斯托克斯公式的應用以及環流量與旋度的計算。

2.利用斯托克斯公式,計算下列曲線積分:

(2)Γ(yz)dx+(zx)dy+(xy)dz\displaystyle\oint\limits_{\Gamma}(y-z)\mathrm{d}x+(z-x)\mathrm{d}y+(x-y)\mathrm{d}z,其中Γ\Gamma爲橢圓x2+y2=a2,xa+zb=1(a>0,b>0)x^2+y^2=a^2,\cfrac{x}{a}+\cfrac{z}{b}=1(a>0,b>0),若從xx軸正向看去,這橢圓是取逆時針方向;

  取Σ\Sigma爲平面xa+zb=1\cfrac{x}{a}+\cfrac{z}{b}=1的上側被Γ\Gamma所圍成的部分,Σ\Sigma的單位法向量n=(cosα,cosβ,cosγ)=(ba2+b2,0,aa2+b2)\bm{n}=(\cos\alpha,\cos\beta,\cos\gamma)=\left(\cfrac{b}{\sqrt{a^2+b^2}},0,\cfrac{a}{\sqrt{a^2+b^2}}\right)。由斯托克斯公式
Γ(yz)dx+(zx)dy+(xy)dz=Σba2+b20aa2+b2xyzyzzxxydS=2(a+b)a2+b2ΣdS. \begin{aligned} &\displaystyle\oint\limits_{\Gamma}(y-z)\mathrm{d}x+(z-x)\mathrm{d}y+(x-y)\mathrm{d}z\\ =&\displaystyle\iint\limits_{\Sigma}\begin{vmatrix}\cfrac{b}{\sqrt{a^2+b^2}}&0&\cfrac{a}{\sqrt{a^2+b^2}}\\\cfrac{\partial}{\partial x}&\cfrac{\partial}{\partial y}&\cfrac{\partial}{\partial z}\\y-z&z-x&x-y\end{vmatrix}\mathrm{d}S\\ =&\cfrac{-2(a+b)}{\sqrt{a^2+b^2}}\displaystyle\iint\limits_{\Sigma}\mathrm{d}S. \end{aligned}
  由於ΣdS=Σ\displaystyle\iint\limits_{\Sigma}\mathrm{d}S=\Sigma的面積AA,而Acosγ=Aaa2+b2=ΣA\cdot\cos\gamma=A\cdot\cfrac{a}{\sqrt{a^2+b^2}}=\SigmaxOyxOy面上的投影區域的面積=πa2=\pi a^2,故
ΣdS=πa2aa2+b2=πaa2+b2. \displaystyle\iint\limits_{\Sigma}\mathrm{d}S=\cfrac{\pi a^2}{\cfrac{a}{\sqrt{a^2+b^2}}}=\pi a\sqrt{a^2+b^2}.
這道題主要利用了斯托克斯公式求解

總習題十一

3.計算下列曲線積分:

(5)L(exsiny2y)dx+(excosy2)dy\displaystyle\int\limits_{L}(e^x\sin y-2y)\mathrm{d}x+(e^x\cos y-2)\mathrm{d}y,其中LL爲上半圓周(xa)2+y2=a2,y0(x-a)^2+y^2=a^2,y\geqslant0,沿逆時針方向;

  添加有向線段OA:y=0OA:y=0xx00變到2a2a,則在半圓閉區域DD上應用格林公式可得
L+OA(exsiny2y)dx+(excosy2)dy=D(QxPy)dxdy=D(excosyexcosy+2)dxdy=2Ddxdy=πa2. \begin{aligned} &\displaystyle\int\limits_{L+OA}(e^x\sin y-2y)\mathrm{d}x+(e^x\cos y-2)\mathrm{d}y\\ =&\displaystyle\iint\limits_{D}\left(\cfrac{\partial Q}{\partial x}-\cfrac{\partial P}{\partial y}\right)\mathrm{d}x\mathrm{d}y\\ =&\displaystyle\iint\limits_{D}(e^x\cos y-e^x\cos y+2)\mathrm{d}x\mathrm{d}y\\ =&2\displaystyle\iint\limits_{D}\mathrm{d}x\mathrm{d}y=\pi a^2. \end{aligned}
  於是
L(exsiny2y)dx+(excosy2)dy=πa2OA(exsiny2y)dx+(excosy2)dy=πa202a(exsin020)dx=πa2. \begin{aligned} &\displaystyle\int\limits_{L}(e^x\sin y-2y)\mathrm{d}x+(e^x\cos y-2)\mathrm{d}y\\ =&\pi a^2-\displaystyle\int\limits_{OA}(e^x\sin y-2y)\mathrm{d}x+(e^x\cos y-2)\mathrm{d}y\\ =&\pi a^2-\displaystyle\int^{2a}_0(e^x\sin0-2\cdot0)\mathrm{d}x=\pi a^2. \end{aligned}
這道題主要利用了添加線段的方法求解

(6)Γxyzdz\displaystyle\oint\limits_{\Gamma}xyz\mathrm{d}z,其中Γ\Gamma是用平面y=zy=z截球面x2+y2+z2=1x^2+y^2+z^2=1所得的截痕,從zz軸的正向看去,沿逆時針方向。

  由Γ\Gamma的一般方程{y=z,x2+y2+z2=1\begin{cases}y=z,\\x^2+y^2+z^2=1\end{cases}可得x2+2y2=1x^2+2y^2=1。從而可令x=cost,y=sint2,z=sint2x=\cos t,y=\cfrac{\sin t}{\sqrt{2}},z=\cfrac{\sin t}{\sqrt{2}}tt00變到2π2\pi。於是
Γxyzdz=02πcost(sint2)2cost2dt=12202πsin2tcos2tdt=18202πsin2(2t)dt=18202π1cos4t2dt=π82=2π16. \begin{aligned} \displaystyle\oint\limits_{\Gamma}xyz\mathrm{d}z&=\displaystyle\int^{2\pi}_0\cos t\left(\cfrac{\sin t}{\sqrt{2}}\right)^2\cdot\cfrac{\cos t}{\sqrt{2}}\mathrm{d}t\\ &=\cfrac{1}{2\sqrt{2}}\displaystyle\int^{2\pi}_0\sin^2 t\cos^2 t\mathrm{d}t\\ &=\cfrac{1}{8\sqrt{2}}\displaystyle\int^{2\pi}_0\sin^2(2t)\mathrm{d}t\\ &=\cfrac{1}{8\sqrt{2}}\displaystyle\int^{2\pi}_0\cfrac{1-\cos4t}{2}\mathrm{d}t=\cfrac{\pi}{8\sqrt{2}}=\cfrac{\sqrt{2}\pi}{16}. \end{aligned}
這道題主要利用了參數方程求解

4.計算下列曲面積分:

(1)ΣdSx2+y2+z2\displaystyle\iint\limits_{\Sigma}\cfrac{\mathrm{d}S}{x^2+y^2+z^2},其中是界於平面z=0z=0z=Hz=H之間的圓柱面x2+y2=R2x^2+y^2=R^2

  將Σ\Sigma分成Σ1\Sigma_1Σ2\Sigma_2兩片,Σ1\Sigma_1y=R2x2y=\sqrt{R^2-x^2}Σ2\Sigma_2y=R2x2y=-\sqrt{R^2-x^2}Σ1\Sigma_1Σ2\Sigma_2zOxzOx面上的投影區域均爲
Dzx={(x,z)0zH,RxR}.Σ1dSx2+y2+z2=Dxz1R2+z21+(x)2R2x2dxdz=0H1R2+z2dzRRRR2x2dx=[1RarctanzR]0H[RarcsinxR]RR=πarctanHR. D_{zx}=\{(x,z)|0\leqslant z\leqslant H,-R\leqslant x\leqslant R\}.\\ \begin{aligned} \displaystyle\iint\limits_{\Sigma_1}\cfrac{\mathrm{d}S}{x^2+y^2+z^2}&=\displaystyle\iint\limits_{D_{xz}}\cfrac{1}{R^2+z^2}\sqrt{1+\cfrac{(-x)^2}{R^2-x^2}}\mathrm{d}x\mathrm{d}z\\ &=\displaystyle\int^H_0\cfrac{1}{R^2+z^2}\mathrm{d}z\cdot\displaystyle\int^R_{-R}\cfrac{R}{\sqrt{R^2-x^2}}\mathrm{d}x\\ &=\left[\cfrac{1}{R}\arctan\cfrac{z}{R}\right]\biggm\vert^H_0\cdot\left[R\arcsin\cfrac{x}{R}\right]\biggm\vert^R_{-R}\\ &=\pi\arctan\cfrac{H}{R}. \end{aligned}
  又由於被積函數關於yy是偶函數,積分曲面Σ1\Sigma_1Σ2\Sigma_2關於zOxzOx面對稱,故
Σ1dSx2+y2+z2=Σ2dSx2+y2+z2=πarctanHR. \displaystyle\iint\limits_{\Sigma_1}\cfrac{\mathrm{d}S}{x^2+y^2+z^2}=\displaystyle\iint\limits_{\Sigma_2}\cfrac{\mathrm{d}S}{x^2+y^2+z^2}=\pi\arctan\cfrac{H}{R}.
  由此得
ΣdSx2+y2+z2=2πarctanHR. \displaystyle\iint\limits_{\Sigma}\cfrac{\mathrm{d}S}{x^2+y^2+z^2}=2\pi\arctan\cfrac{H}{R}.
這道題主要利用了分片的方法求解

(2)Σ(y2z)dyz+(z2x)dzdx+(x2y)dxdy\displaystyle\iint\limits_{\Sigma}(y^2-z)\mathrm{d}y\mathrm{z}+(z^2-x)\mathrm{d}z\mathrm{d}x+(x^2-y)\mathrm{d}x\mathrm{d}y,其中Σ\Sigma爲錐面z=x2+y2(0zh)z=\sqrt{x^2+y^2}(0\leqslant z\leqslant h)的外側;

  添加輔助曲面Σ1={(x,y,z)z=h,x2+y2h2}\Sigma_1=\{(x,y,z)|z=h,x^2+y^2\leqslant h^2\},取上側,則在由Σ\SigmaΣ1\Sigma_1所包圍的空間閉區域Ω\varOmega上應用高斯公式得
Σ+Σ1(y2z)dyz+(z2x)dzdx+(x2y)dxdy=Ω[(y2z)x+(z2x)y+(x2y)z]dv=Ω0dv=0. \begin{aligned} &\displaystyle\iint\limits_{\Sigma+\Sigma_1}(y^2-z)\mathrm{d}y\mathrm{z}+(z^2-x)\mathrm{d}z\mathrm{d}x+(x^2-y)\mathrm{d}x\mathrm{d}y\\ =&\displaystyle\iiint\limits_{\varOmega}\left[\cfrac{\partial(y^2-z)}{\partial x}+\cfrac{\partial(z^2-x)}{\partial y}+\cfrac{\partial(x^2-y)}{\partial z}\right]\mathrm{d}v=\displaystyle\iiint\limits_{\varOmega}0\cdot\mathrm{d}v=0. \end{aligned}
  於是
原式=Σ1(y2z)dyz+(z2x)dzdx+(x2y)dxdy=Σ1(x2y)dxdy=Dxy(x2y)dxdy. \begin{aligned} \text{原式}&=-\displaystyle\iint\limits_{\Sigma_1}(y^2-z)\mathrm{d}y\mathrm{z}+(z^2-x)\mathrm{d}z\mathrm{d}x+(x^2-y)\mathrm{d}x\mathrm{d}y\\ &=-\displaystyle\iint\limits_{\Sigma_1}(x^2-y)\mathrm{d}x\mathrm{d}y=-\displaystyle\iint\limits_{D_{xy}}(x^2-y)\mathrm{d}x\mathrm{d}y. \end{aligned}
  其中
Dxy={(x,y)x2+y2h2}. D_{xy}=\{(x,y)|x^2+y^2\leqslant h^2\}.
  在計算Dxy(x2y)dxdy\displaystyle\iint\limits_{D_{xy}}(x^2-y)\mathrm{d}x\mathrm{d}y時,由對稱性易知Dxyydxdy=0\displaystyle\iint\limits_{D_{xy}}y\mathrm{d}x\mathrm{d}y=0,又Dxyx2dxdy=Dxyy2dxdy\displaystyle\iint\limits_{D_{xy}}x^2\mathrm{d}x\mathrm{d}y=\displaystyle\iint\limits_{D_{xy}}y^2\mathrm{d}x\mathrm{d}y,故
Dxy(x2y)dxdy=12Dxy(x2+y2)dxdy=極座標1202πdθ0hρ2ρdρ=π4h4. \begin{aligned} \displaystyle\iint\limits_{D_{xy}}(x^2-y)\mathrm{d}x\mathrm{d}y&=\cfrac{1}{2}\displaystyle\iint\limits_{D_{xy}}(x^2+y^2)\mathrm{d}x\mathrm{d}y\\ &\xlongequal{\text{極座標}}\cfrac{1}{2}\displaystyle\int^{2\pi}_0\mathrm{d}\theta\displaystyle\int^h_0\rho^2\cdot\rho\mathrm{d}\rho=\cfrac{\pi}{4}h^4. \end{aligned}
  從而得
原式=π4h4. \text{原式}=-\cfrac{\pi}{4}h^4.
這道題主要利用了補足閉曲面的方法求解

(4)Σxyzdxdy\displaystyle\iint\limits_{\Sigma}xyz\mathrm{d}x\mathrm{d}y,其中Σ\Sigma爲球面x2+y2+z2=1(x0,y0)x^2+y^2+z^2=1(x\geqslant0,y\geqslant0)的外側。

  應用高斯公式計算。添加輔助曲面Σ3:x=0\Sigma_3:x=0(取後側);Σ4:y=0\Sigma_4:y=0(取左側),則有
Σ3xyzdxdy=Σ4xyzdxdy=0. \displaystyle\iint\limits_{\Sigma_3}xyz\mathrm{d}x\mathrm{d}y=\displaystyle\iint\limits_{\Sigma_4}xyz\mathrm{d}x\mathrm{d}y=0.
  在由Σ,Σ3\Sigma,\Sigma_3Σ4\Sigma_4所圍成的空間閉區域Ω\varOmega上應用高斯公式,得
Σxyzdxdy=Σ+Σ3+Σ4xyzdxdy=Ω(xyz)zdv=Ωxydv=Dxyxydxdy1x2y21x2y2dz=2Dxyxy1x2y2dxdy=215. \begin{aligned} \displaystyle\iint\limits_{\Sigma}xyz\mathrm{d}x\mathrm{d}y&=\displaystyle\iint\limits_{\Sigma+\Sigma_3+\Sigma_4}xyz\mathrm{d}x\mathrm{d}y=\displaystyle\iiint\limits_{\varOmega}\cfrac{\partial(xyz)}{\partial z}\mathrm{d}v\\ &=\displaystyle\iiint\limits_{\varOmega}xy\mathrm{d}v=\displaystyle\iint\limits_{D_{xy}}xy\mathrm{d}x\mathrm{d}y\displaystyle\int^{\sqrt{1-x^2-y^2}}_{-\sqrt{1-x^2-y^2}}\mathrm{d}z\\ &=2\displaystyle\iint\limits_{D_{xy}}xy\sqrt{1-x^2-y^2}\mathrm{d}x\mathrm{d}y=\cfrac{2}{15}. \end{aligned}
這道題主要利用了添加輔助面的方法求解

寫在最後

  如果覺得文章不錯就點個贊吧。另外,如果有不同的觀點,歡迎留言或私信。
   歡迎非商業轉載,轉載請註明出處。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章