第四章 不定積分(二)

  本文接自上一篇《第四章 不定積分(一)》,繼續記錄總習題四。

總習題四

4.求下列不定積分(其中aabb爲常數):

(7)tan4xdx;\displaystyle\int\tan^4x\mathrm{d}x;


tan4xdx=tan2x(sec2x1)dx=tan2xd(tanx)(sec2x1)dx=13tan3xtanx+x+C. \begin{aligned} \displaystyle\int\tan^4x\mathrm{d}x&=\displaystyle\int\tan^2x(\sec^2x-1)\mathrm{d}x\\ &=\displaystyle\int\tan^2x\mathrm{d}(\tan x)-\displaystyle\int(\sec^2x-1)\mathrm{d}x\\ &=\cfrac{1}{3}\tan^3x-\tan x+x+C. \end{aligned}
這道題主要利用三角變換公式進行計算

(10)a+xaxdx;\displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x;

解一
a+xaxdx=a+xa2x2dx=a11(xa)2d(xa)12d(a2x2)a2x2=aarcsinxaa2x2+C. \begin{aligned} \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x&=\displaystyle\int\cfrac{a+x}{\sqrt{a^2-x^2}}\mathrm{d}x=a\displaystyle\int\cfrac{1}{\sqrt{1-\left(\cfrac{x}{a}\right)^2}}\mathrm{d}\left(\cfrac{x}{a}\right)-\cfrac{1}{2}\displaystyle\int\cfrac{\mathrm{d}(a^2-x^2)}{\sqrt{a^2-x^2}}\\ &=a\arcsin\cfrac{x}{a}-\sqrt{a^2-x^2}+C. \end{aligned}
解二  令u=a+xaxu=\sqrt{\cfrac{a+x}{a-x}},即x=au21u2+1x=a\cfrac{u^2-1}{u^2+1},則
a+xaxdx=u4au(1+u2)2du=2aud(11+u2)=2au1+u2+2a1+u2du=2au1+u2+2aarctanu+C=(xa)a+xax+2aarctana+xax+C. \begin{aligned} \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x&=\displaystyle\int u\cdot\cfrac{4au}{(1+u^2)^2}\mathrm{d}u=\displaystyle\int-2au\mathrm{d}\left(\cfrac{1}{1+u^2}\right)\\ &=-\cfrac{2au}{1+u^2}+\displaystyle\int\cfrac{2a}{1+u^2}\mathrm{d}u\\ &=-\cfrac{2au}{1+u^2}+2a\arctan u+C\\ &=(x-a)\sqrt{\cfrac{a+x}{a-x}}+2a\arctan\sqrt{\cfrac{a+x}{a-x}}+C. \end{aligned}
這道題可以利用換元積分或進行分式變換求解

(11)dxx(x+1);\displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}};

解一
dxx(x+1)=dx(x+12)2(12)2=x=12+12secusecudu=lnsecu+tanu+C=ln2x+1+2x(x+1)+C. \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}&=\displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{\left(x+\cfrac{1}{2}\right)^2-\left(\cfrac{1}{2}\right)^2}}\\ &\xlongequal{x=-\cfrac{1}{2}+\cfrac{1}{2}\sec u}\displaystyle\int\sec u\mathrm{d}u=\ln|\sec u+\tan u|+C\\ &=\ln|2x+1+2\sqrt{x(x+1)}|+C. \end{aligned}
解二  當x>0x>0時,因爲1x(x+1)=1xx1+x\cfrac{1}{\sqrt{x(x+1)}}=\cfrac{1}{x}\sqrt{\cfrac{x}{1+x}},故令u=x1+xu=\sqrt{\cfrac{x}{1+x}},即x=u21u2x=\cfrac{u^2}{1-u^2},則
dxx(x+1)=21u2du=(11u+11+u)du=ln1+u1u+C=ln1+x+x1+xx+C=ln2x+1+2x(x+1)+C. \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}&=\displaystyle\int\cfrac{2}{1-u^2}\mathrm{d}u=\displaystyle\int\left(\cfrac{1}{1-u}+\cfrac{1}{1+u}\right)\mathrm{d}u\\ &=\ln|\cfrac{1+u}{1-u}|+C=\ln\left|\cfrac{\sqrt{1+x}+\sqrt{x}}{\sqrt{1+x}-\sqrt{x}}\right|+C\\ &=\ln|2x+1+2\sqrt{x(x+1)}|+C. \end{aligned}
  當x<1x<-1時,同樣可得dxx(x+1)=ln2x+1+2x(x+1)+C\displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}=\ln|2x+1+2\sqrt{x(x+1)}|+C。(這道題主要用分段或配方進行計算

(15)dxx2x21;\displaystyle\int\cfrac{\mathrm{d}x}{x^2\sqrt{x^2-1}};

  dxx2x21=x=1uudu1u2=1u2+C=x21x+C,\displaystyle\int\cfrac{\mathrm{d}x}{x^2\sqrt{x^2-1}}\xlongequal{x=\cfrac{1}{u}}-\displaystyle\int\cfrac{u\mathrm{d}u}{\sqrt{1-u^2}}=\sqrt{1-u^2}+C=\cfrac{\sqrt{x^2-1}}{x}+C,易知當x<0x<0x>0x>0時的結果相同。(這道題主要利用換元積分計算

(16)dx(a2x2)52;\displaystyle\int\cfrac{\mathrm{d}x}{(a^2-x^2)^{\frac{5}{2}}};

  設x=asinu(π2<u<π2)x=a\sin u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right),則a2x2=acosu,dx=acosudu\sqrt{a^2-x^2}=a\cos u,\mathrm{d}x=a\cos u\mathrm{d}u,於是
dx(a2x2)52=1a4sec4udu=1a4(tan2u+1)d(tanu)=tan3u3a4+tanua4+C=13a4[x3(a2x2)3+3xa2x2]+C. \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{(a^2-x^2)^{\frac{5}{2}}}&=\cfrac{1}{a^4}\displaystyle\int\sec^4u\mathrm{d}u=\cfrac{1}{a^4}\displaystyle\int(\tan^2u+1)\mathrm{d}(\tan u)\\ &=\cfrac{\tan^3u}{3a^4}+\cfrac{\tan u}{a^4}+C\\ &=\cfrac{1}{3a^4}\left[\cfrac{x^3}{\sqrt{(a^2-x^2)^3}}+\cfrac{3x}{\sqrt{a^2-x^2}}\right]+C. \end{aligned}
這道題主要利用三角函數進行替換

(17)dxx41+x2;\displaystyle\int\cfrac{\mathrm{d}x}{x^4\sqrt{1+x^2}};


dxx41+x2=x=1uu3du1+u2=(u1+u2u1+u2)du=13(1+u2)32+1+u2+C=13(1+x2)3x3+1+x2x+C. \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x^4\sqrt{1+x^2}}&\xlongequal{x=\cfrac{1}{u}}\displaystyle\int\cfrac{-u^3\mathrm{d}u}{\sqrt{1+u^2}}=-\displaystyle\int\left(u\sqrt{1+u^2}-\cfrac{u}{\sqrt{1+u^2}}\right)\mathrm{d}u\\ &=-\cfrac{1}{3}(1+u^2)^{\frac{3}{2}}+\sqrt{1+u^2}+C\\ &=-\cfrac{1}{3}\cfrac{\sqrt{(1+x^2)^3}}{x^3}+\cfrac{\sqrt{1+x^2}}{x}+C. \end{aligned}
  易知當x<0x<0x>0x>0時結果相同。(這道題用倒數換元再拆分因式計算

(21)arctanxdx;\displaystyle\int\arctan\sqrt{x}\mathrm{d}x;


arctanxdx=arctanxd(1+x)=(1+x)arctanx12xdx=(1+x)arctanxx+C. \begin{aligned} \displaystyle\int\arctan\sqrt{x}\mathrm{d}x&=\displaystyle\int\arctan\sqrt{x}\mathrm{d}(1+x)=(1+x)\arctan\sqrt{x}-\displaystyle\int\cfrac{1}{2\sqrt{x}}\mathrm{d}x\\ &=(1+x)\arctan\sqrt{x}-\sqrt{x}+C. \end{aligned}
這道題在積分時湊出一個因式簡化計算

(22)1+cosxsinxdx;\displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x;


1+cosxsinxdx=2cosx22sinx2cosx2dx=±2cscx2d(x2)=±2lncscx2cotx2+C. \begin{aligned} \displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{\sqrt{2}|\cos\cfrac{x}{2}|}{2\sin\cfrac{x}{2}\cos\cfrac{x}{2}}\mathrm{d}x=\pm\sqrt{2}\displaystyle\int\csc\cfrac{x}{2}\mathrm{d}\left(\cfrac{x}{2}\right)\\ &=\pm\sqrt{2}\ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|+C. \end{aligned}
  上式當cosx2>0\cos\cfrac{x}{2}>0時取正,當cosx2<0\cos\cfrac{x}{2}<0時取負。
  當cosx2>0\cos\cfrac{x}{2}>0時,
lncscx2cotx2=ln1cosx2sinx2=ln(cscx2cotx2). \ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|=\ln\cfrac{1-\cos\cfrac{x}{2}}{|\sin\cfrac{x}{2}|}\\ =\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right).
  當cosx2<0\cos\cfrac{x}{2}<0時,
lncscx2cotx2=ln1cosx2sinx2=ln(cscx2+cotx2)=ln(cscx2cotx2). \ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|=\ln\cfrac{1-\cos\cfrac{x}{2}}{|\sin\cfrac{x}{2}|}\\ =\ln\left(|\csc\cfrac{x}{2}|+|\cot\cfrac{x}{2}|\right)=-\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right).
  因此有
1+cosxsinxdx=2ln(cscx2cotx2)+C. \displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x=\sqrt{2}\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right)+C.
這道題主要利用了分段求解

(23)x3(1+x8)2dx;\displaystyle\int\cfrac{x^3}{(1+x^8)^2}\mathrm{d}x;


x3(1+x8)2dx=141(1+x8)2d(x4)=u=x4141(1+u2)2du. \displaystyle\int\cfrac{x^3}{(1+x^8)^2}\mathrm{d}x=\cfrac{1}{4}\displaystyle\int\cfrac{1}{(1+x^8)^2}\mathrm{d}(x^4)\xlongequal{u=x^4}\cfrac{1}{4}\displaystyle\int\cfrac{1}{(1+u^2)^2}\mathrm{d}u.
  設u=tant(π2<t<π2)u=\tan t\left(-\cfrac{\pi}{2}<t<\cfrac{\pi}{2}\right),則1+u2=sec2t,du=sec2tdt1+u^2=\sec^2t,\mathrm{d}u=\sec^2t\mathrm{d}t,於是
原式=14cos2tdt=2t+sin2t16+C=arctanx48+x48(1+x8)+C. \begin{aligned} \text{原式}&=\cfrac{1}{4}\displaystyle\int\cos^2t\mathrm{d}t=\cfrac{2t+\sin2t}{16}+C\\ &=\cfrac{\arctan x^4}{8}+\cfrac{x^4}{8(1+x^8)}+C. \end{aligned}
這道題利用了兩次換元求解

(26)sinx1+sinxdx;\displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x;

解一
  令u=tanx2u=\tan\cfrac{x}{2},得
sinx1+sinxdx=4u(1+u)2(1+u2)du=[2(1+u)2+21+u2]du=21+u+2arctanu+C=21+tanx2+x+C. \begin{aligned} \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{4u}{(1+u)^2(1+u^2)}\mathrm{d}u=\displaystyle\int\left[\cfrac{-2}{(1+u)^2}+\cfrac{2}{1+u^2}\right]\mathrm{d}u\\ &=\cfrac{2}{1+u}+2\arctan u+C=\cfrac{2}{1+\tan\cfrac{x}{2}}+x+C. \end{aligned}
解二
sinx1+sinxdx=sinx(1sinx)cos2xdx=1cos2xd(cosx)(sec2x1)dx=secxtanx+x+C. \begin{aligned} \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{\sin x(1-\sin x)}{\cos^2x}\mathrm{d}x\\ &=-\displaystyle\int\cfrac{1}{\cos^2x}\mathrm{d}(\cos x)-\displaystyle\int(\sec^2x-1)\mathrm{d}x\\ &=\sec x-\tan x+x+C. \end{aligned}
這道題主要利用了換元或三角變換求解

(27)x+sinx1+cosxdx;\displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x;


x+sinx1+cosxdx=x2sec2x2dx+tanx2dx=xd(tanx2)+tanx2dx=xtanx2+C. \begin{aligned} \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{x}{2}\sec^2\cfrac{x}{2}\mathrm{d}x+\displaystyle\int\tan\cfrac{x}{2}\mathrm{d}x\\ &=\displaystyle\int x\mathrm{d}(\tan\cfrac{x}{2})+\displaystyle\int\tan\cfrac{x}{2}\mathrm{d}x\\ &=x\tan\cfrac{x}{2}+C. \end{aligned}
這道題主要倍角公式求解,另當該函數爲定積分時,有另一種解法,在總習題五第十一題(1),傳送門在這裏

(28)esinxxcos3xsinxcos2xdx;\displaystyle\int e^{\sin x}\cfrac{x\cos^3x-\sin x}{\cos^2x}\mathrm{d}x;


esinxxcos3xsinxcos2xdx=xesinxcosxdxesinxtanxsecxdx=xd(esinx)esinxd(secx)=xesinxesinxdx(secxesinxesinxdx)=(xsecx)esinx+C. \begin{aligned} \displaystyle\int e^{\sin x}\cfrac{x\cos^3x-\sin x}{\cos^2x}\mathrm{d}x&=\displaystyle\int xe^{\sin x}\cos x\mathrm{d}x-\displaystyle\int e^{\sin x}\tan x\sec x\mathrm{d}x\\ &=\displaystyle\int x\mathrm{d}(e^{\sin x})-\displaystyle\int e^{\sin x}\mathrm{d}(\sec x)\\ &=xe^{\sin x}-\displaystyle\int e^{\sin x}\mathrm{d}x-(\sec xe^{\sin x}-\displaystyle\int e^{\sin x}\mathrm{d}x)\\ &=(x-\sec x)e^{\sin x}+C. \end{aligned}
這道題利用分部積分法化簡至有相同部分可以相互抵消求解

(31)e3x+exe4xe2x+1dx;\displaystyle\int\cfrac{e^{3x}+e^x}{e^{4x}-e^{2x}+1}\mathrm{d}x;


e3x+exe4xe2x+1dx=ex+exe2x+e2x1dx=d(exex)(exex)2+1=arctan(exex)+C. \begin{aligned} \displaystyle\int\cfrac{e^{3x}+e^x}{e^{4x}-e^{2x}+1}\mathrm{d}x&=\displaystyle\int\cfrac{e^{x}+e^{-x}}{e^{2x}+e^{-2x}-1}\mathrm{d}x=\displaystyle\int\cfrac{\mathrm{d}(e^{x}-e^{-x})}{(e^{x}-e^{-x})^2+1}\\ &=\arctan(e^{x}-e^{-x})+C. \end{aligned}
這道題利用分式約分求解

(33)ln2(x+1+x2)dx;\displaystyle\int\ln^2(x+\sqrt{1+x^2})\mathrm{d}x;


ln2(x+1+x2)dx=xln2(x+1+x2)2xln(x+1+x2)1+x2dx=xln2(x+1+x2)2ln(x+1+x2)d(1+x2)=xln2(x+1+x2)21+x2ln(x+1+x2)+2x+C. \begin{aligned} \displaystyle\int\ln^2(x+\sqrt{1+x^2})\mathrm{d}x&=x\ln^2(x+\sqrt{1+x^2})-\displaystyle\int\cfrac{2x\ln(x+\sqrt{1+x^2})}{\sqrt{1+x^2}}\mathrm{d}x\\ &=x\ln^2(x+\sqrt{1+x^2})-\displaystyle\int2\ln(x+\sqrt{1+x^2})\mathrm{d}(\sqrt{1+x^2})\\ &=x\ln^2(x+\sqrt{1+x^2})-2\sqrt{1+x^2}\ln(x+\sqrt{1+x^2})+2x+C. \end{aligned}
這道題主要利用(ln(x+1+x2))=11+x2(\ln(x+\sqrt{1+x^2}))'=\cfrac{1}{\sqrt{1+x^2}}進行化簡求解

(34)lnx(1+x2)32dx;\displaystyle\int\cfrac{\ln x}{(1+x^2)^{\frac{3}{2}}}\mathrm{d}x;


lnx(1+x2)32=x=1uulnu(1+u2)32du=lnud((1+u2)12)=lnu1+u2+duu1+u2=xlnx1+x2dx1+x2=xlnx1+x2ln(x+1+x2)+C. \begin{aligned} \displaystyle\int\cfrac{\ln x}{(1+x^2)^{\frac{3}{2}}}&\xlongequal{x=\cfrac{1}{u}}\displaystyle\int\cfrac{u\ln u}{(1+u^2)^{\frac{3}{2}}}\mathrm{d}u=-\displaystyle\int\ln u\mathrm{d}((1+u^2)^{-\frac{1}{2}})\\ &=-\cfrac{\ln u}{\sqrt{1+u^2}}+\displaystyle\int\cfrac{\mathrm{d}u}{u\sqrt{1+u^2}}\\ &=x\cfrac{\ln x}{\sqrt{1+x^2}}-\displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{1+x^2}}\\ &=x\cfrac{\ln x}{\sqrt{1+x^2}}-\ln(x+\sqrt{1+x^2})+C. \end{aligned}
這道題利用倒數換元求解

(35)1x2arcsinxdx;\displaystyle\int\sqrt{1-x^2}\arcsin x\mathrm{d}x;

  設x=sinu(π2<u<π2)x=\sin u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right),則1x2=cosu,dx=cosudu\sqrt{1-x^2}=\cos u,\mathrm{d}x=\cos u\mathrm{d}u,於是
1x2arcsinxdx=ucos2udu=12u(1+cos2u)du=14ud(2u+sin2u)=u(2u+sin2u)414(2u+sin2u)du=u24+u4sin2usin2u4+C=(arcsinx)24+x21x2arcsinxx24+C. \begin{aligned} \displaystyle\int\sqrt{1-x^2}\arcsin x\mathrm{d}x&=\displaystyle\int u\cos^2u\mathrm{d}u=\cfrac{1}{2}\displaystyle\int u(1+\cos2u)\mathrm{d}u\\ &=\cfrac{1}{4}\displaystyle\int u\mathrm{d}(2u+\sin2u)\\ &=\cfrac{u(2u+\sin2u)}{4}-\cfrac{1}{4}\displaystyle\int(2u+\sin2u)\mathrm{d}u\\ &=\cfrac{u^2}{4}+\cfrac{u}{4}\sin2u-\cfrac{\sin^2u}{4}+C\\ &=\cfrac{(\arcsin x)^2}{4}+\cfrac{x}{2}\sqrt{1-x^2}\arcsin x-\cfrac{x^2}{4}+C. \end{aligned}
這道題利用三角函數換元求解

(36)x3arccosx1x2dx;\displaystyle\int\cfrac{x^3\arccos x}{\sqrt{1-x^2}}\mathrm{d}x;

  設x=cosu(0<u<π)x=\cos u\left(0<u<\pi\right),則1x2=sinu,dx=sinudu\sqrt{1-x^2}=\sin u,\mathrm{d}x=-\sin u\mathrm{d}u,於是
x3arccosx1x2dx=ucos3udu=ud(sinu13sin3u)=u(sinu13sin3u)+(sinu13sin3u)du=u(sinu13sin3u)13(2+cos2u)(cosu)=u(sinu13sin3u)23cosu19cos3u+C=131x2(2+x2)arccosx19(6+x2)+C. \begin{aligned} \displaystyle\int\cfrac{x^3\arccos x}{\sqrt{1-x^2}}\mathrm{d}x&=-\displaystyle\int u\cos^3u\mathrm{d}u=-\displaystyle\int u\mathrm{d}(\sin u-\cfrac{1}{3}\sin^3u)\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)+\displaystyle\int (\sin u-\cfrac{1}{3}\sin^3u)\mathrm{d}u\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)-\cfrac{1}{3}\displaystyle\int(2+\cos^2u)\mathrm(\cos u)\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)-\cfrac{2}{3}\cos u-\cfrac{1}{9}\cos^3u+C\\ &=-\cfrac{1}{3}\sqrt{1-x^2}(2+x^2)\arccos x-\cfrac{1}{9}(6+x^2)+C. \end{aligned}
這道題主要用三角函數換元再分部積分求解

(38)dxsin3xcosx;\displaystyle\int\cfrac{\mathrm{d}x}{\sin^3x\cos x};


dxsin3xcosx=cotxsec2xd(cotx)=u=cotxu(1+1u2)du=u22lnu+C=cot2x2lncotx+C. \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sin^3x\cos x}&=-\displaystyle\int\cot x\sec^2x\mathrm{d}(\cot x)\xlongequal{u=\cot x}-\displaystyle\int u\left(1+\cfrac{1}{u^2}\right)\mathrm{d}u\\ &=-\cfrac{u^2}{2}-\ln|u|+C=-\cfrac{\cot^2x}{2}-\ln|\cot x|+C. \end{aligned}
這道題主要利用了三角函數換元

(39)dx(2+cosx)sinx;\displaystyle\int\cfrac{\mathrm{d}x}{(2+\cos x)\sin x};


dx(2+cosx)sinx=d(cosx)(2+cosx)(cos2x+1)=u=cosxdu(2+u)(u2+1)=[16(u1)12(u+1)+13(u+2)]du=16lnu112lnu+1+13lnu+2+C=16ln(1cosx)12ln(1+cosx)+13ln(2+cosx)+C. \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{(2+\cos x)\sin x}&=\displaystyle\int\cfrac{\mathrm{d}(\cos x)}{(2+\cos x)(\cos^2x+1)}\\ &\xlongequal{u=\cos x}\displaystyle\int\cfrac{\mathrm{d}u}{(2+u)(u^2+1)}\\ &=\displaystyle\int\left[\cfrac{1}{6(u-1)}-\cfrac{1}{2(u+1)}+\cfrac{1}{3(u+2)}\right]\mathrm{d}u\\ &=\cfrac{1}{6}\ln|u-1|-\cfrac{1}{2}\ln|u+1|+\cfrac{1}{3}\ln|u+2|+C\\ &=\cfrac{1}{6}\ln(1-\cos x)-\cfrac{1}{2}\ln(1+\cos x)+\cfrac{1}{3}\ln(2+\cos x)+C. \end{aligned}
這道題主要利用三角函數換元和因式分解積分

(40)sinxcosxsinx+cosxdx;\displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x;

解一
sinxcosxsinx+cosxdx=12(sinx+cosx)212sinx+cosxdx=12(sinx+cosx)dx121sinx+cosxdx=12(cosx+sinx)121sinx+cosxdx. \begin{aligned} \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{\cfrac{1}{2}(\sin x+\cos x)^2-\cfrac{1}{2}}{\sin x+\cos x}\mathrm{d}x\\ &=\cfrac{1}{2}\displaystyle\int(\sin x+\cos x)\mathrm{d}x-\cfrac{1}{2}\displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x\\ &=\cfrac{1}{2}(-\cos x+\sin x)-\cfrac{1}{2}\displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x. \end{aligned}
  令u=tanx2u=\tan\cfrac{x}{2},則sinx=2u1+u2,cosx=1u21+u2,dx=21+u2du\sin x=\cfrac{2u}{1+u^2},\cos x=\cfrac{1-u^2}{1+u^2},\mathrm{d}x=\cfrac{2}{1+u^2}\mathrm{d}u,故有
1sinx+cosxdx=22u+1u2du=2(u1)2(2)2du=122u12du+122u1+2du=12lnu1+2u12+C. \begin{aligned} \displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{2}{2u+1-u^2}\mathrm{d}u=-\displaystyle\int\cfrac{2}{(u-1)^2-(\sqrt{2})^2}\mathrm{d}u\\ &=-\cfrac{1}{\sqrt{2}}\displaystyle\int\cfrac{2}{u-1-\sqrt{2}}\mathrm{d}u+\cfrac{1}{\sqrt{2}}\displaystyle\int\cfrac{2}{u-1+\sqrt{2}}\mathrm{d}u\\ &=\cfrac{1}{\sqrt{2}}\ln\left|\cfrac{u-1+\sqrt{2}}{u-1-\sqrt{2}}\right|+C'. \end{aligned}
  因此有
sinxcosxsinx+cosxdx=12(sinxcosx)122lntanx21+2tanx212+C. \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x=\cfrac{1}{2}(\sin x-\cos x)-\cfrac{1}{2\sqrt{2}}\ln\left|\cfrac{\tan\cfrac{x}{2}-1+\sqrt{2}}{\tan\cfrac{x}{2}-1-\sqrt{2}}\right|+C.
解二
sinxcosxsinx+cosxdx=sinxcosx2sin(x+π4)dx=u=x+π42sin2u122sinudu=12sinudu122cscudu=cos(x+π4)2122lncsc(x+π4)cot(x+π4)+V. \begin{aligned} \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{\sin x\cos x}{\sqrt{2}\sin\left(x+\cfrac{\pi}{4}\right)}\mathrm{d}x\xlongequal{u=x+\cfrac{\pi}{4}}\displaystyle\int\cfrac{2\sin^2u-1}{2\sqrt{2}\sin u}\mathrm{d}u\\ &=\cfrac{1}{\sqrt{2}}\displaystyle\int\sin u\mathrm{d}u-\cfrac{1}{2\sqrt{2}}\displaystyle\int\csc u\mathrm{d}u\\ &=-\cfrac{\cos\left(x+\cfrac{\pi}{4}\right)}{\sqrt{2}}-\cfrac{1}{2\sqrt{2}}\ln\left|\csc\left(x+\cfrac{\pi}{4}\right)-\cot\left(x+\cfrac{\pi}{4}\right)\right|+V. \end{aligned}
這道題主要利用萬能公式或三角函數換元積分求解

寫在最後

  如果覺得文章不錯就點個贊吧。另外,如果有不同的觀點,歡迎留言或私信。
   歡迎非商業轉載,轉載請註明出處。
  另,參考的積分表及公式見附錄

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章