李永樂數學基礎過關660題高等數學填空題

  本節包括了一到一百題的易錯題和難題。

6.I=limx0xsinx22(1cosx)sinxx4=I=\lim\limits_{x\to0}\cfrac{x\sin x^2-2(1-\cos x)\sin x}{x^4}=______.

  先做如下變形:I=limx0xsinx22sinx+2sin2xx4.I=\lim\limits_{x\to0}\cfrac{x\sin x^2-2\sin x+2\sin2x}{x^4}.
  可用泰勒展開式
sinx=x16x3+ο(x4)xsinx2=x(x2+ο(x4))=x3+ο(x4)2sinx=2(x16x3+ο(x4))=2x+13x3+ο(x4)sin2x=2x16(2x)3+ο(x4)=2x43x3+ο(x4) \sin x=x-\cfrac{1}{6}x^3+\omicron(x^4)\\ \Rightarrow x\sin x^2=x(x^2+\omicron(x^4))=x^3+\omicron(x^4)\\ -2\sin x=-2\left(x-\cfrac{1}{6}x^3+\omicron(x^4)\right)=-2x+\cfrac{1}{3}x^3+\omicron(x^4)\\ \sin2x=2x-\cfrac{1}{6}(2x)^3+\omicron(x^4)=2x-\cfrac{4}{3}x^3+\omicron(x^4)\\
  相加得
xsinx22sinx+2sin2x=0+ο(x4)(x0) x\sin x^2-2\sin x+2\sin2x=0+\omicron(x^4)(x\to0)
  因此
I=limx0ο(x4)x4=0. I=\lim\limits_{x\to0}\cfrac{\omicron(x^4)}{x^4}=0.
這道題主要利用了泰勒展開式求解

7.I=limx0(1cosx)(1cosx3)(1cosxn)(1cosx)n1=I=\lim\limits_{x\to0}\cfrac{(1-\cos x)(1-\sqrt[3]{\cos x})\cdots(1-\sqrt[n]{\cos x})}{(1-\cos x)^{n-1}}=_____.

  用等價無窮小因子替換:
tln(1+t)(cosx)1m1ln[(cosx)1m1+1]=1mlncosx. t\sim\ln(1+t)\\ (\cos x)^{\frac{1}{m}}-1\sim\ln[(\cos x)^{\frac{1}{m}}-1+1]=\cfrac{1}{m}\ln\cos x.
  因此
I=limx0(cosx1)(cosx31)(cosxn1)(cosx1)n1=limx0lncosxlncosx3lncosxn(cosx1)n1=1n!limx0lnn1cosx(cosx1)n1=1n!. \begin{aligned} I&=\lim\limits_{x\to0}\cfrac{(\cos x-1)(\sqrt[3]{\cos x}-1)\cdots(\sqrt[n]{\cos x}-1)}{(\cos x-1)^{n-1}}\\ &=\lim\limits_{x\to0}\cfrac{\ln\cos x\ln\sqrt[3]{\cos x}\cdots\ln\sqrt[n]{\cos x}}{(\cos x-1)^{n-1}}\\ &=\cfrac{1}{n!}\lim\limits_{x\to0}\cfrac{\ln^{n-1}\cos x}{(\cos x-1)^{n-1}}=\cfrac{1}{n!}. \end{aligned}
這道題主要利用了等價無窮小代換求解

9.I=limx0x2xsin(xt)tdtx2I=\lim\limits_{x\to0}\cfrac{\displaystyle\int^x_{x^2}\cfrac{\sin(xt)}{t}\mathrm{d}t}{x^2}=_____.


x2xsin(xt)tdt=xt=sx3x2sinssdsI=limx0x3x2sinssdsx2=limx0sinx2x2limx03sinx32x2=limx0sinx2x2limx032sinx3x2=1. \displaystyle\int^x_{x^2}\cfrac{\sin(xt)}{t}\mathrm{d}t\xlongequal{xt=s}\displaystyle\int^{x^2}_{x^3}\cfrac{\sin s}{s}\mathrm{d}s\\ \Rightarrow\begin{aligned} I&=\lim\limits_{x\to0}\cfrac{\displaystyle\int^{x^2}_{x^3}\cfrac{\sin s}{s}\mathrm{d}s}{x^2}=\lim\limits_{x\to0}\cfrac{\sin x^2}{x^2}-\lim\limits_{x\to0}\cfrac{3\sin x^3}{2x^2}\\ &=\lim\limits_{x\to0}\cfrac{\sin x^2}{x^2}-\lim\limits_{x\to0}\cfrac{3}{2}\cfrac{\sin x^3}{x^2}=1. \end{aligned}
這道題主要利用了換元法求解

14.設limx0ln(1+x+f(x)x)x=3\lim\limits_{x\to0}\cfrac{\ln\left(1+x+\cfrac{f(x)}{x}\right)}{x}=3,則limx0f(x)x2\lim\limits_{x\to0}\cfrac{f(x)}{x^2}=_____.

  由limx0ln(1+x+f(x)x)x=3\lim\limits_{x\to0}\cfrac{\ln\left(1+x+\cfrac{f(x)}{x}\right)}{x}=3,當x0x\to0時,分母爲無窮小,所以分子也爲無窮小,進一步有limx0(x+f(x)x)=0.\lim\limits_{x\to0}\left(x+\cfrac{f(x)}{x}\right)=0.
  因此,當x0x\to0時,ln(1+x+f(x)x)x+f(x)x\ln\left(1+x+\cfrac{f(x)}{x}\right)\sim x+\cfrac{f(x)}{x}。因此limx0f(x)x2=2.\lim\limits_{x\to0}\cfrac{f(x)}{x^2}=2.這道題主要利用了等價無窮小代換求解

17.設a,ba,b爲常數,且limx(1x63ax2b)=0\lim\limits_{x\to\infty}(\sqrt[3]{1-x^6}-ax^2-b)=0,則a=a=b=b=.

  由泰勒展開,當xx\to\infty時,
1x63=x2(11x6)13=x2(113x6+ο(x6)).\sqrt[3]{1-x^6}=-x^2\left(1-\cfrac{1}{x^6}\right)^{\frac{1}{3}}=-x^2\left(1-\cfrac{1}{3x^6}+\omicron(x^{-6})\right).
  所以a=1,b=0.a=-1,b=0.這道題主要利用了泰勒展開式求解

19.設x0=0,xn=1+2xn11+xn1x_0=0,x_n=\cfrac{1+2x_{n-1}}{1+x_{n-1}},則limnxn=\lim\limits_{n\to\infty}x_n=_____.

  顯然,
0<xn=2(1+xn1)11+xn1=211+xn1<2(n=1,2,3,) 0<x_n=\cfrac{2(1+x_{n-1})-1}{1+x_{n-1}}=2-\cfrac{1}{1+x_{n-1}}<2\qquad(n=1,2,3,\cdots)
  即xnx_n有界。
  令f(x)=211+xxn+1=f(xn)(n=1,2,3,)f(x)=2-\cfrac{1}{1+x}\Rightarrow x_{n+1}=f(x_n)(n=1,2,3,\cdots)單調。
  因此xnx_n收斂,記limnxn=a\lim\limits_{n\to\infty}x_n=a
  對遞歸方程xn=1+2xn11+xn1x_n=\cfrac{1+2x_{n-1}}{1+x_{n-1}}兩邊取極限得
a=1+2a1+a. a=\cfrac{1+2a}{1+a}.
  解得a=1+52.a=\cfrac{1+\sqrt{5}}{2}.這道題主要利用了數列極限的方法求解

30.設f(x)f(x)x=0x=0可導且f(0)=1,f(0)=3f(0)=1,f'(0)=3,則數列極限I=limn(f(1n))1n1cos1n=I=\lim\limits_{n\to\infty}\left(f\left(\cfrac{1}{n}\right)\right)^{\frac{\frac{1}{n}}{1-\cos\frac{1}{n}}}=_____.

  先化爲
I=limne1n1cos1nlnf(1n) I=\lim\limits_{n\to\infty}e^{\frac{\frac{1}{n}}{1-\cos\frac{1}{n}}\ln f(\frac{1}{n})}
  轉化爲求
limn1n1cos1nlnf(1n)=limn1n121n2[lnf(1n)lnf(0)]=2limnlnf(1n)lnf(0)1n=2(lnf(x))x=0=2f(0)f(0)=6.I=e6. \begin{aligned} \lim\limits_{n\to\infty}\cfrac{\cfrac{1}{n}}{1-\cos\cfrac{1}{n}}\ln f\left(\cfrac{1}{n}\right)&=\lim\limits_{n\to\infty}\cfrac{\cfrac{1}{n}}{\cfrac{1}{2}\cfrac{1}{n^2}}\left[\ln f\left(\cfrac{1}{n}\right)-\ln f(0)\right]\\ &=2\lim\limits_{n\to\infty}\cfrac{\ln f\left(\cfrac{1}{n}\right)-\ln f(0)}{\cfrac{1}{n}}=2\cdot(\ln f(x))'\biggm\vert_{x=0}\\ &=2\cfrac{f'(0)}{f(0)}=6. \end{aligned}\\ \Rightarrow I=e^6.
這道題主要利用了對數求極限的方法求解

31.設f(x)f(x)x=ax=a處二階導數存在,則I=limh0f(a+h)f(a)hf(a)h=I=\lim\limits_{h\to0}\cfrac{\cfrac{f(a+h)-f(a)}{h}-f'(a)}{h}=_____.


I=limh0f(a+h)f(a)hf(a)h2=limh0f(a+h)f(a)2h=12f(a). \begin{aligned} I&=\lim\limits_{h\to0}\cfrac{f(a+h)-f(a)-hf'(a)}{h^2}\\ &=\lim\limits_{h\to0}\cfrac{f'(a+h)-f'(a)}{2h}\\ &=\cfrac{1}{2}f''(a). \end{aligned}
這道題主要利用了導數的定義求解

51.設x2f(x)dx=arcsinx+C\displaystyle\int x^2f'(x)\mathrm{d}x=\arcsin x+C,則f(x)=f(x)=_____.

  先求出,有
(x2f(x)dx)=(arcsinx+C)x2f(x)=11x2,f(x)=1x21x2f(x)=1x21x2dx \left(\displaystyle\int x^2f'(x)\mathrm{d}x\right)'=(\arcsin x+C)'\\ \Rightarrow x^2f'(x)=\cfrac{1}{\sqrt{1-x^2}},f'(x)=\cfrac{1}{x^2\sqrt{1-x^2}}\\ \Rightarrow f(x)=\displaystyle\int\cfrac{1}{x^2\sqrt{1-x^2}}\mathrm{d}x
  作三角代換x=sint(π2<t<t2)x=\sin t\left(-\cfrac{\pi}{2}<t<\cfrac{t}{2}\right)
f(x)=costsin2tcostdt=cotx+C=1x2x+C. \begin{aligned} f(x)&=\displaystyle\int\cfrac{\cos t}{\sin^2t\cos t}\mathrm{d}t=-\cot x+C\\ &=-\cfrac{\sqrt{1-x^2}}{x}+C. \end{aligned}
這道題主要利用了三角代換求解

53.I=x+1+2(x+1)2x+1dx=I=\displaystyle\int\cfrac{\sqrt{x+1}+2}{(x+1)^2-\sqrt{x+1}}\mathrm{d}x=_____.

  令x+1=t\sqrt{x+1}=t,則x=t21,dx=2tdtx=t^2-1,\mathrm{d}x=2t\mathrm{d}t,於是
I=t+2t4t2tdt=2t+2t31dt=2(t2+t+1)(t21)(t1)(t2+t+1)dt=2(1t1t+1t2+t+1)dt=2(1t1122t+1+1t2+t+1)dt=21t1dtd(t2+t+1)t2+t+1d(t+12)(t+12)2+(32)2=2lnt1lnt2+t+123arctan2x+1+13+C. \begin{aligned} I&=\displaystyle\int\cfrac{t+2}{t^4-t}2t\mathrm{d}t=2\displaystyle\int\cfrac{t+2}{t^3-1}\mathrm{d}t=2\displaystyle\int\cfrac{(t^2+t+1)-(t^2-1)}{(t-1)(t^2+t+1)}\mathrm{d}t\\ &=2\displaystyle\int\left(\cfrac{1}{t-1}-\cfrac{t+1}{t^2+t+1}\right)\mathrm{d}t=2\displaystyle\int\left(\cfrac{1}{t-1}-\cfrac{1}{2}\cfrac{2t+1+1}{t^2+t+1}\right)\mathrm{d}t\\ &=2\displaystyle\int\cfrac{1}{t-1}\mathrm{d}t-\displaystyle\int\cfrac{\mathrm{d}(t^2+t+1)}{t^2+t+1}-\displaystyle\int\cfrac{\mathrm{d}\left(t+\cfrac{1}{2}\right)}{\left(t+\cfrac{1}{2}\right)^2+\left(\cfrac{\sqrt{3}}{2}\right)^2}\\ &=2\ln|t-1|-\ln|t^2+t+1|-\cfrac{2}{\sqrt{3}}\arctan\cfrac{2\sqrt{x+1}+1}{\sqrt{3}}+C. \end{aligned}
這道題主要利用了換元法求解

57.I=dxxx4+1dx=I=\displaystyle\int\cfrac{\mathrm{d}x}{x\sqrt{x^4+1}}\mathrm{d}x=_____.


I=dxx31x4+1dx=12[1+(1x2)2]12d(1x2)=12ln1x2+1+1x4+C. \begin{aligned} I&=\displaystyle\int\cfrac{\mathrm{d}x}{x^3\sqrt{\cfrac{1}{x^4}+1}}\mathrm{d}x=\cfrac{-1}{2}\displaystyle\int\left[1+\left(\cfrac{1}{x^2}\right)^2\right]^{-\frac{1}{2}}\mathrm{d}\left(\cfrac{1}{x^2}\right)\\ &=-\cfrac{1}{2}\ln\left|\cfrac{1}{x^2}+\sqrt{1+\cfrac{1}{x^4}}\right|+C. \end{aligned}
這道題主要利用了分部積分法求解

60.I=02(x2xx2(114x2)3)dx=I=\displaystyle\int^2_0\left(x\sqrt{2x-x^2}-\sqrt{\left(1-\cfrac{1}{4}x^2\right)^3}\right)\mathrm{d}x=_____.


I=02x2xx2dx02(114x2)3dx. I=\displaystyle\int^2_0x\sqrt{2x-x^2}\mathrm{d}x-\displaystyle\int^2_0\sqrt{\left(1-\cfrac{1}{4}x^2\right)^3}\mathrm{d}x.
  而
02x2xx2dx=02x1(x1)2dx=x1=t11t1t2dt+111t2dt=0+2101t2dt=12π.02(114x2)3dx=x=2sint20π2cos4tdt=38π.I=π8. \begin{aligned} \displaystyle\int^2_0x\sqrt{2x-x^2}\mathrm{d}x&=\displaystyle\int^2_0x\sqrt{1-(x-1)^2}\mathrm{d}x\\ &\xlongequal{\text{令}x-1=t}\displaystyle\int^1_{-1}t\sqrt{1-t^2}\mathrm{d}t+\displaystyle\int^1_{-1}\sqrt{1-t^2}\mathrm{d}t\\ &=0+2\displaystyle\int^0_{-1}\sqrt{1-t^2}\mathrm{d}t=\cfrac{1}{2}\pi. \end{aligned}\\ \begin{aligned} \displaystyle\int^2_0\sqrt{\left(1-\cfrac{1}{4}x^2\right)^3}\mathrm{d}x\xlongequal{\text{令}x=2\sin t}2\displaystyle\int^{\frac{\pi}{2}}_0\cos^4t\mathrm{d}t=\cfrac{3}{8}\pi. \end{aligned}\\ I=\cfrac{\pi}{8}.
這道題主要利用了多次換元積分的方法求解

79.當y>0y>0時,微分方程(x2xyy2)dy+y2dx=0(x-2xy-y^2)\mathrm{d}y+y^2\mathrm{d}x=0的通解爲_____。

  當y>0y>0時,方程可改寫爲dxdy+(1y22y)x=1\cfrac{\mathrm{d}x}{\mathrm{d}y}+\left(\cfrac{1}{y^2}-\cfrac{2}{y}\right)x=1
  兩邊乘μ(y)=e(1y21y)dy=e1y2lny=1y2e1y\mu(y)=e^{\int(\frac{1}{y^2}-\frac{1}{y})\mathrm{d}y}=e^{-\frac{1}{y}-2\ln y}=\cfrac{1}{y^2}e^{-\frac{1}{y}}
ddy(1y2e1yx)=1y2e1y. \cfrac{\mathrm{d}}{\mathrm{d}y}\left(\cfrac{1}{y^2}e^{-\frac{1}{y}}x\right)=\cfrac{1}{y^2}e^{-\frac{1}{y}}.
  積分得
1y2e1yx=1y2e1ydy+C=e1y+C. \cfrac{1}{y^2}e^{-\frac{1}{y}}x=\displaystyle\int\cfrac{1}{y^2}e^{-\frac{1}{y}}\mathrm{d}y+C=e^{-\frac{1}{y}}+C.
  通解爲
x=y2e1y(C+e1y)=y2(Ce1y+1). x=y^2e^{\frac{1}{y}}(C+e^{-\frac{1}{y}})=y^2(Ce^{\frac{1}{y}}+1).
這道題主要利用了分離參數的方法求解

94. 設z=01xytf(t)dt,0x1,0y1z=\displaystyle\int^1_0|xy-t|f(t)\mathrm{d}t,0\leqslant x\leqslant1,0\leqslant y\leqslant1,其中f(x)f(x)爲連續函數,則zxx+zyy=z''_{xx}+z''_{yy}=_____.


z=01xytf(t)dt=0xy(xyt)f(t)dt+xy1(txy)f(t)dt=xy0xyf(t)dt0xytf(t)dt+xy1tf(t)dtxyxy1f(t)dt. \begin{aligned} z&=\displaystyle\int^1_0|xy-t|f(t)\mathrm{d}t\\ &=\displaystyle\int^{xy}_0(xy-t)f(t)\mathrm{d}t+\displaystyle\int^1_{xy}(t-xy)f(t)\mathrm{d}t\\ &=xy\displaystyle\int^{xy}_0f(t)\mathrm{d}t-\displaystyle\int^{xy}_0tf(t)\mathrm{d}t+\displaystyle\int^1_{xy}tf(t)\mathrm{d}t-xy\displaystyle\int^1_{xy}f(t)\mathrm{d}t. \end{aligned}
  則
zx=y0xyf(t)dt+xy2f(xy)xy2f(xy)xy2f(xy)yxy1f(t)dt+xy2f(xy)=y0xyf(t)dtyxy1f(t)dt.zxx=y2f(xy)+y2f(xy)=2y2f(xy). \begin{aligned} z_x'&=y\displaystyle\int^{xy}_0f(t)\mathrm{d}t+xy^2f(xy)-xy^2f(xy)-xy^2f(xy)-y\displaystyle\int^1_{xy}f(t)\mathrm{d}t+xy^2f(xy)\\ &=y\displaystyle\int^{xy}_0f(t)\mathrm{d}t-y\displaystyle\int^1_{xy}f(t)\mathrm{d}t. \end{aligned}\\ z''_{xx}=y^2f(xy)+y^2f(xy)=2y^2f(xy).
  由變量的對稱性可知
zyy=2x2f(xy). z''_{yy}=2x^2f(xy).
  則zxx+zyy=2(x2+y2)f(xy)z''_{xx}+z''_{yy}=2(x^2+y^2)f(xy)。(這道題主要利用了多元函數求導的方法求解

寫在最後

  如果覺得文章不錯就點個贊吧。另外,如果有不同的觀點,歡迎留言或私信。
   歡迎非商業轉載,轉載請註明出處。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章