線性代數知識課筆記1

筆記內容摘自 猴博士愛講課@B站 https://www.bilibili.com/video/BV1hs411e7X8?p=4

行列式

行列式的計算

行列式分爲2階、3階、4階……n階等,其中2階的計算方法爲:
1326 \begin{vmatrix}1&3\\2&6\end{vmatrix}

計算方法爲對角線相乘求差,即
1623=0 1*6 - 2*3 = 0
對於3階及以上的,責需要經過對行列式進行變換後再進行計算,例如:
123234457R22R1=123212322432457=123012457R34R1=123012441542743=123012035R33R2=123012033(1)53(2)=123012001=1(1)1=1 \begin{vmatrix}1&2&3\\2&3&4\\4&5&7\end{vmatrix} \\ \overset{R_2-2R_1}{\longrightarrow}=\begin{vmatrix}1&2&3\\2-1*2&3-2*2&4-3*2\\4&5&7\end{vmatrix} =\begin{vmatrix}1&2&3\\0&-1&-2\\4&5&7\end{vmatrix} \\ \overset{R_3-4R_1}{\longrightarrow}=\begin{vmatrix}1&2&3\\0&-1&-2\\4-4*1&5-4*2&7-4*3\end{vmatrix} =\begin{vmatrix}1&2&3\\0&-1&-2\\0&-3&-5\end{vmatrix} \\ \overset{R_3-3R_2}{\longrightarrow}=\begin{vmatrix}1&2&3\\0&-1&-2\\0&-3-3*(-1)&-5-3*(-2)\end{vmatrix} =\begin{vmatrix}1&2&3\\0&-1&-2\\0&0&1\end{vmatrix} \\ = 1 * (-1) * 1 \\ =-1

性質1:某行(列)加上或減去領一行(列)的幾倍,行列式不變

上述3階的計算過程也可以簡化爲:
123234457R22R1R34R1R33R2123012001=1(1)1=1 \begin{vmatrix}1&2&3\\2&3&4\\4&5&7\end{vmatrix} \begin{matrix}\xrightarrow{R_2-2R_1} \\ \xrightarrow{R_3-4R_1} \\ \xrightarrow{R_3-3R_2} \end{matrix} \begin{vmatrix}1&2&3\\0&-1&-2\\0&0&1\end{vmatrix} \\ =1*(-1)*1 \\ =-1

擴展一個4階的行列式算一下
123423454578891212R22R1R34R1R48R1123401230358071220R33R2R47R21234012300110021R42R31234012300110001=1(1)1(1)=1 \begin{vmatrix}1&2&3&4\\2&3&4&5\\4&5&7&8\\8&9&12&12\end{vmatrix} \begin{matrix} \xrightarrow{R_2-2R_1} \\ \xrightarrow{R_3-4R_1} \\ \xrightarrow{R_4-8R_1} \end{matrix} \begin{vmatrix}1&2&3&4\\0&-1&-2&-3\\0&-3&-5&-8\\0&-7&-12&-20\end{vmatrix} \begin{matrix} \xrightarrow{R_3-3R_2} \\ \xrightarrow{R_4-7R_2} \end{matrix} \begin{vmatrix}1&2&3&4\\0&-1&-2&-3\\0&0&1&1\\0&0&2&1\end{vmatrix} \begin{matrix} \xrightarrow{R_4-2R_3} \end{matrix} \begin{vmatrix}1&2&3&4\\0&-1&-2&-3\\0&0&1&1\\0&0&0&-1\end{vmatrix} \\ =1*(-1)*1*(-1) \\ =1

性質2:某行(列)乘k,等於k乘此行列式

例:
已知123423454578891012=1,求246823454578891012 \text{已知} \begin{vmatrix}1&2&3&4\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix}= -1 \text{,求} \begin{vmatrix}2&4&6&8\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix}
觀察發現,第一行{2,4,6,8}是{1,2,3,4}的2倍,即
246823454578891012=2123423454578891012=2(1)=2 \begin{vmatrix}2&4&6&8\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix} =2 *\begin{vmatrix}1&2&3&4\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix} =2*(-1) = -2

2468234512152124891012=23123423454578891012=23(1)=6 \begin{vmatrix}2&4&6&8\\2&3&4&5\\12&15&21&24\\8&9&10&12\end{vmatrix} =2*3*\begin{vmatrix}1&2&3&4\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix} =2*3*(-1)=-6

性質3:互換兩行(列),行列式變號

例1:
234512344578891012R1<>R21123423454578891012=1(1)=1 \begin{vmatrix}2&3&4&5\\1&2&3&4\\4&5&7&8\\8&9&10&12\end{vmatrix} \begin{matrix}\xrightarrow{R_1<->R_2}\end{matrix} -1*\begin{vmatrix}1&2&3&4\\2&3&4&5\\4&5&7&8\\8&9&10&12\end{vmatrix} = -1*(-1) = 1
例2:
0003003212340524R1<>R410524003212340003R2<>R31(1)0524123400320003R1<>R21(1)(1)1234052400320003=1(1)(1)1533=45 \begin{vmatrix}0&0&0&3\\0&0&3&2\\1&2&3&4\\0&5&2&4\end{vmatrix} \begin{matrix} \xrightarrow{R_1<->R_4} \end{matrix} -1*\begin{vmatrix}0&5&2&4\\0&0&3&2\\1&2&3&4\\0&0&0&3\end{vmatrix} \begin{matrix} \xrightarrow{R_2<->R_3} \end{matrix} -1*(-1)\begin{vmatrix}0&5&2&4\\1&2&3&4\\0&0&3&2\\0&0&0&3\end{vmatrix} \\ \begin{matrix} \xrightarrow{R_1<->R_2} \end{matrix} -1*(-1)*(-1)\begin{vmatrix}1&2&3&4\\0&5&2&4\\0&0&3&2\\0&0&0&3\end{vmatrix} \\ =-1*(-1)*(-1)*1*5*3*3= -45

常用的幾種行列式運算題型

1/7 對稱的N行N列計算

xaaaxaaax=(xa)(n1)[x+(n1)a] \begin{vmatrix}x&a&\cdots&a\\a&x&\cdots&a\\\vdots&\vdots&\ddots&\vdots\\a&a&\cdots&x\end{vmatrix} =(x-a)^{(n-1)}[x+(n-1)a]

例1:請計算如下行列式的值
2333323333233332x=2      a=3      n=4,2333323333233332=(23)(41)[2+(41)3]=11 \begin{vmatrix} 2&3&3&3\\3&2&3&3\\3&3&2&3\\3&3&3&2 \end{vmatrix} \\即 x=2 ~\ ~\ ~\ a=3 ~\ ~\ ~\ n =4,代入以上公式可得 \\ \begin{vmatrix} 2&3&3&3\\3&2&3&3\\3&3&2&3\\3&3&3&2 \end{vmatrix} =(2-3)^{(4-1)}[2+(4-1)*3] =-11

2/7 指數遞增行列式求解

111x1x2xnx12x22xn2x1n1x2n1xnn1=(xnxn1)(xnxn2)(xnxn3)(xnx1)(xn1xn2)(xn1xn3)(xn1x1)(x2x1) \begin{vmatrix} 1&1&\cdots&1\\x_1&x_2&\cdots&x_n\\x_1^2&x_2^2&\cdots&x_n^2\\\vdots&\vdots&\ddots&\vdots\\x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1} \end{vmatrix} \\=(x_n-x_{n-1})(x_n-x_{n-2})(x_n-x_{n-3})\cdots\cdots(x_n-x_1) \\*(x_{n-1}-x_{n-2})(x_{n-1}-x_{n-3})\cdots\cdots(x_{n-1}-x_1) \\*\cdots\cdots \\*(x_2-x_1)

例2:請計算如下行列式的值
111134563242526233435363x1=3      x2=4      x3=5      x4=6      n=4(x4x3)(x4x2)(x4x1)(x3x2)(x3x1)(x2x1)=(65)(64)(63)(54)(53)(43)=12 \begin{vmatrix} 1&1&1&1\\3&4&5&6\\3^2&4^2&5^2&6^2\\3^3&4^3&5^3&6^3 \end{vmatrix} \\即 x_1=3 ~\ ~\ ~\ x_2=4 ~\ ~\ ~\ x_3=5 ~\ ~\ ~\ x_4=6 ~\ ~\ ~\ n=4,代入以上公式可得 \\(x_4-x_3)(x_4-x_2)(x_4-x_1)(x_3-x_2)(x_3-x_1)(x_2-x_1) \\=(6-5)*(6-4)*(6-3)*(5-4)*(5-3)*(4-3) \\=12

3/7 特殊行列式計算

①兩行(列)相同或者成比例時,行列式爲0

②某行(列)爲兩項相加相減時,行列式可拆解成兩個行列式相加減

例3:請計算如下行列式的值
已知a1b1c1a2b2c2a3b3c3=1a1+c1b1a1+b1a2+c2b2a2+b2a3+c3b3a3+b3a1+c1b1a1+b1a2+c2b2a2+b2a3+c3b3a3+b3=a1b1a1+b1a2b2a2+b2a3b3a3+b3+c1b1a1+b1c2b2a2+b2c3b3a3+b3=a1b1a1a2b2a2a3b3a3+a1b1b1a2b2b2a3b3b3+c1b1a1c2b2a2c3b3a3+c1b1b1c2b2b2c3b3b3=0+0+c1b1a1c2b2a2c3b3a3+0=1a1b1c1a2b2c2a3b3c3=11=1 \text{已知} \begin{vmatrix} a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3 \end{vmatrix} =1,試求 \begin{vmatrix} a_1+c_1&b_1&a_1+b_1\\a_2+c_2&b_2&a_2+b_2\\a_3+c_3&b_3&a_3+b_3 \end{vmatrix} \\ \begin{vmatrix} a_1+c_1&b_1&a_1+b_1\\a_2+c_2&b_2&a_2+b_2\\a_3+c_3&b_3&a_3+b_3 \end{vmatrix} =\begin{vmatrix} a_1&b_1&a_1+b_1\\a_2&b_2&a_2+b_2\\a_3&b_3&a_3+b_3 \end{vmatrix}+ \begin{vmatrix} c_1&b_1&a_1+b_1\\c_2&b_2&a_2+b_2\\c_3&b_3&a_3+b_3 \end{vmatrix} \\ =\begin{vmatrix} a_1&b_1&a_1\\a_2&b_2&a_2\\a_3&b_3&a_3 \end{vmatrix}+ \begin{vmatrix} a_1&b_1&b_1\\a_2&b_2&b_2\\a_3&b_3&b_3 \end{vmatrix}+ \begin{vmatrix} c_1&b_1&a_1\\c_2&b_2&a_2\\c_3&b_3&a_3 \end{vmatrix}+ \begin{vmatrix} c_1&b_1&b_1\\c_2&b_2&b_2\\c_3&b_3&b_3 \end{vmatrix} \\ =0+0+\begin{vmatrix} c_1&b_1&a_1\\c_2&b_2&a_2\\c_3&b_3&a_3 \end{vmatrix}+0 =-1*\begin{vmatrix} a_1&b_1&c_1\\a_2&b_2&c_2\\a_3&b_3&c_3 \end{vmatrix}=-1*1=-1

4/7 求餘子式、代數餘子式

例4:
12356791011a23a12 試求 \begin{vmatrix} 1&2&3\\5&6&7\\9&10&11 \end{vmatrix} 中 a_{23}的餘子式,a_{12}的代數餘子式

餘子式M:
M23=12910=8 M_{23}= \begin{vmatrix} 1&2\\9&10 \end{vmatrix} =-8
代數餘子式A:
A12=(1)1+2M12=(1)357911=1(51197)=1(8)=8 A_{12}=(-1)^{1+2}M_{12} \\ =(-1)^3*\begin{vmatrix}5&7\\9&11 \end{vmatrix} \\ =-1*(5*11-9*7)=-1*(-8)=8

5/7 任意行/列計算行列式

D=ai1Ai1+ai2Ai2++ainAin(i)D=a1jA1j+a2jA2j++anjAnj(j) D = a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots\cdots+a_{in}A_{in}(第i行) \\ D = a_{1j}A_{1j}+a_{2j}A_{2j}+\cdots\cdots+a_{nj}A_{nj}(第j列)

例5:
12356791011=a11A11+a12A12+a13A13=a11(1)1+1M11+a12(1)1+2M12+a13(1)1+3M13=1(1)2671011+2(1)359711+3(1)456910=3+2(1)(8)+3(4)=1 \begin{vmatrix} 1&2&3\\5&6&7\\9&10&11 \end{vmatrix} =a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13} \\ =a_{11}(-1)^{1+1}M_{11}+a_{12}(-1)^{1+2}M_{12}+a_{13}(-1)^{1+3}M_{13} \\=1*(-1)^2*\begin{vmatrix}6&7\\10&11\end{vmatrix}+2*(-1)^3*\begin{vmatrix}5&9\\7&11\end{vmatrix}+3*(-1)^4*\begin{vmatrix}5&6\\9&10\end{vmatrix} \\ =-3+2*(-1)*(-8)+3*(-4)=1

12356791011=a12A12+a22A22+a32A32=a12(1)1+2M12+a22(1)2+2M22+a32(1)3+2M32=2(1)357911+6(1)413911+10(1)51537=2(1)(8)+6(1)4(16)+10(1)5(8)=1696+80=0 \begin{vmatrix} 1&2&3\\5&6&7\\9&10&11 \end{vmatrix} =a_{12}*A_{12}+a_{22}*A_{22}+a_{32}*A_{32} \\ =a_{12}*(-1)^{1+2}M_{12}+a_{22}*(-1)^{2+2}M_{22}+a_{32}*(-1)^{3+2}M_{32} \\ =2*(-1)^3\begin{vmatrix}5&7\\9&11\end{vmatrix}+6*(-1)^4\begin{vmatrix}1&3\\9&11\end{vmatrix}+10*(-1)^5\begin{vmatrix}1&5\\3&7\end{vmatrix} \\ =2*(-1)*(-8)+6*(-1)^4*(-16)+10*(-1)^5*(-8) \\ =16-96+80=0

6/7 多個A或M相加減

D=123456789101112131415163A11+4A12+5A13+6A14      3A11+4A21+5A31+6A41      3M11+4M21+5M31+6M41 已知 D = \begin{vmatrix} 1 & 2 & 3 & 4\\ 5 & 6 & 7 & 8\\ 9 & 10 & 11 & 12\\ 13 & 14 & 15 & 16 \end{vmatrix} ,試求 ① 3A_{11}+4A_{12}+5A_{13}+6A_{14} ~\ ~\ ~\ ② 3A_{11}+4A_{21}+5A_{31}+6A_{41} ~\ ~\ ~\ ③3M_{11}+4M_{21}+5M_{31}+6M_{41}

對於A,直接找到對應的位置,將係數與對應的項進行替換即可:

3A11+4A12+5A13+6A14=345656789101112131415163A11+4A21+5A31+6A41=3234467851011126141516 3A_{11}+4A_{12}+5A_{13}+6A_{14} \\ =\begin{vmatrix} 3 & 4 & 5 & 6 \\ 5 & 6 & 7 & 8\\ 9 & 10 & 11 & 12\\ 13 & 14 & 15 & 16 \end{vmatrix} \\ 3A_{11}+4A_{21}+5A_{31}+6A_{41} \\ =\begin{vmatrix} 3 & 2 & 3 & 4 \\ 4 & 6 & 7 & 8\\ 5 & 10 & 11 & 12\\ 6 & 14 & 15 & 16 \end{vmatrix}

對於M,則先通過M與A的對應關係,即
Aij=(1)i+jMij A_{ij}=(-1)^{i+j}M_{ij}

3M11+4M21+5M31+6M41A11=(1)1+1M11A11=M11A21=(1)2+1M21A21=M21A31=(1)3+1M31A31=M31A41=(1)4+1M241A41=M41      3M11+4M21+5M31+6M41=3A114A21+5A316M41=3234467851011126141516 3M_{11}+4M_{21}+5M_{31}+6M_{41} \\ \begin{matrix} A_{11}=(-1)^{1+1}M_{11} \xrightarrow{} A_{11}=M_{11} \end{matrix} \\ \begin{matrix} A_{21}=(-1)^{2+1}M_{21} \xrightarrow{} A_{21}=-M_{21} \end{matrix} \\ \begin{matrix} A_{31}=(-1)^{3+1}M_{31} \xrightarrow{} A_{31}=M_{31} \end{matrix} \\ \begin{matrix} A_{41}=(-1)^{4+1}M_{241} \xrightarrow{} A_{41}=-M_{41} \end{matrix} \\ \therefore ~\ ~\ ~\ 3M_{11}+4M_{21}+5M_{31}+6M_{41} \\= 3A_{11}-4A_{21}+5A_{31}-6M_{41} \\ =\begin{vmatrix} 3 & 2 & 3 & 4 \\ -4 & 6 & 7 & 8\\ 5 & 10 & 11 & 12\\ -6 & 14 & 15 & 16 \end{vmatrix}

7/7 給一方程組,判讀其解的情況

方程組 D≠0 D=0
其次 只有一組零解 有零解與非零解
非其次 只有一組非零解 有多個解或無解

KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \left\{ \beg…

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章