Math | Fourier Series & Fourier Transform

Basic knowledge

1.1 How to describe a wave

  • [picture from Baidu]在這裏插入圖片描述
  • [formula] x=Asin(ωt+φx = Asin( ωt + φ )
    • A means amplitude.
    • ω represents angular frequency, which means phase angle radian (相角弧度值) changing per unit time. ω=2πf=2πT\omega = 2 \pi f = {2\pi \above{1pt} T}
    • φ means primary phase, while ωt+φωt + φ means phase.

1.2 Standard orthonormal basis

  • The standard orthogonal basis can represent any vector in the vector space.

1.3 Hilbert space

  • Hilbert space extends Euclid space, and the base (基底) of Hilbert space is usually function. For example, arbitrary function in Hilbert space can decomposed into sine and cosine function thought Fourier Series, where sine and cosine are orthonormal basis.

1.4 Dirichlet’s convergence theorem

Let f(x)f(x) takes 2l2l as a period, if f(x)f(x) on [l,l][-l, l] satisfies that:

  • ①. f(x)f(x) continuous or only finite first class discontinuities (第一類間斷點:可去、跳躍)
  • ②. only finite extreme point (極值點)

we can say that the Fourier Series of f(x)f(x) converge in [l,l][-l, l].

1.5 Euler’s formula

eix=cosx+isinxe^{ix} = cosx + i*sinx

Fourier Series

1.1 Formula

f(x)=a02+n=1(ancos(nπxl)+bnsin(nπxl))f(x) = {a_0 \above{1pt} 2} + \displaystyle\sum_{n=1}^\infin (a_n*cos({n\pi x \above{1pt} l}) + b_n * sin({n\pi x \above{1pt} l}))
where
a0=1lllf(x)dxa_0 = {1 \above{1pt} l} \int_{-l}^l f(x)dx
an=1lllf(x)cos(nπxl)dxa_n = {1 \above{1pt} l} \int_{-l}^l f(x)*cos({n\pi x \above{1pt} l})dx
bn=1lllf(x)sin(nπxl)dxb_n = {1 \above{1pt} l} \int_{-l}^l f(x)*sin({n\pi x \above{1pt} l})dx

1.2 Compact formula

f(x)=k=ckeikxf(x) = \displaystyle\sum_{k=-\infin}^\infin c_k * e^{ikx}
where ckc_k represents the projection of f(x)f(x) in eikxe^{ikx} direction can be written as <f(x),eikx><f(x), e^{ikx}>. Actually, ckc_k can be considered as coefficient.

Fourier Transform

1.1 Formula

  • forward (time domain to frequency domain)
    F(ξ)=f(t)eiωtdtF(\xi) = \int_{-\infin}^\infin f(t)*e^{-i\omega t} dt
    where ξ\xi means frequency.
  • inverse (frequency domain to time domain)
    f(t)=F(ξ)eiωtdξf(t) = \int_{-\infin}^\infin F(\xi)*e^{i\omega t} d\xi

Diff between Fourier Series & Fourier Transform

  • Fourier Series is about period function, while Fourier Transform extend ll to infinity.

Discrete Fourier Transform (DFT)

1.1 Tips

  • DFT approximating that Fourier series approximation on a finite interval where your function is periodic.

1.2 Transform Formula

fk^=j=0n1fjei2πjkn\hat{f_k} = \sum_{j=0}^{n-1} f_j * e^{-i2\pi jk \above{1pt} n}
fk=1nj=0n1fj^ei2πjkn{f_k} = {1 \above{1pt} n} \sum_{j=0}^{n-1} \hat{f_j} * e^{i2\pi jk \above{1pt} n}

let ω=ei2πn\omega = e^{-i2\pi \above{1pt} n}

[f0^f1^f2^...fn^]=[111...11ωω2...ωn11ω2ω4...ω2(n1)1............1ωn1ω2(n1)...ω(n1)(n1)][f0f1f2...fn]\begin{bmatrix} \hat{f_0} \\ \hat{f_1} \\ \hat{f_2} \\ ...\\ \hat{f_n} \\ \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & ... & 1\\ 1 & \omega & \omega^2 & ... & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & ... & \omega^{2(n-1)} \\ 1 & ... & ... & ... & ...\\ 1 & \omega^{n-1} & \omega^{2(n-1)} & ... & \omega^{(n-1)(n-1)}\\ \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ ...\\ f_n \\ \end{bmatrix}

Fast Fourier Transform (FFT)

  • Efficient measure to compute the matrix of DFT.
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章