狄利克雷卷積總結

狄利克雷卷積

約定

 n=p1a1p2a2prar\ n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}

 ab\ a \mid b a\ a整除 b\ b

 ab\ a \nmid b a\ a不整除 b\ b

 akb\ a^{k} \parallel b akb\ a^{k} \mid b ak+1b\ a^{k+1} \nmid b

 (a,b)\ (a,b)最大公約數

 [a,b]\ [a,b]最小公倍數

定義

h(n)=dnf(n)g(nd)=d1d2=nf(d1)g(d2) h(n)= \sum_{d \mid n} f(n) g(\frac{n}{d})=\sum_{d_{1} d_{2} =n} f(d_{1})g(d_{2})

也可寫作:

h=fg h=f \circ g

這相當於一種運算。

性質

結合律

(fg)h=f(gh) (f \circ g) \circ h=f \circ(g \circ h)

證明

       (fg)h=d1n{d2d1f(d2)g(d1d2)}g(nd1) =d1d2d3=n(f(d1)g(d2))g(d3) =d1d2d3=nf(d1)(g(d2)g(d3)) =f(gh)  \begin{array}{crl} & &\,\,\,\,\,\,\,(f \circ g) \circ h\\& &=\sum_{d_{1} \mid n}\{ \sum_{d_{2} \mid d_{1}}f(d_{2})g(\frac{d_{1}}{d_{2}})\} g(\frac{n}{d_{1}}) \\\,\\ & &=\sum_{d_{1} d_{2} d_{3}= n} (f(d_{1})g(d_{2}))g(d_{3}) \\\,\\ & &=\sum_{d_{1} d_{2} d_{3}= n} f(d_{1})(g(d_{2})g(d_{3}))\\\,\\ & &=f \circ(g \circ h)\\\,\\ \end{array}
證畢

交換律

fg=gf f \circ g=g \circ f

證明

fg=d1d2=nf(d1)g(d2)=d1d2=ng(d1)f(d2)=gf f \circ g=\sum_{d_{1} d_{2} =n} f(d_{1})g(d_{2})=\sum_{d_{1} d_{2} =n} g(d_{1})f(d_{2})=g \circ f

證畢

逆元

對於 f\ f存在 g\ g使
fg=ϵ(n) f \circ g = \epsilon(n)
其中
ϵ(n)=[n=1] \epsilon(n)= [n=1]
證明

g(n)=1f(1)([n=1]in,inf(i)g(ni)) g(n)=\frac{1}{f(1)} \left( \left[ n=1 \right] - \sum_{i \mid n,i \neq n}f(i) g(\frac{n}{i}) \right)

如此一來

dnf(d)g(nd)=f(1)g(n)dn,d1f(d)g(nd)=[n=1] \sum_{d \mid n}f(d)g(\frac{n}{d})=f(1)g(n)-\sum_{d \mid n,d \neq 1}f(d)g(\frac{n}{d})=\left[ n=1 \right]

證畢

分配率

f(g+h)=fg+fh f \circ (g + h)=f \circ g+f \circ h

證明

f(g+h)=d1d2=nf(d1)(g(d2)+h(d2))=d1d2=nf(d1)g(d2)+d1d2=nf(d1)h(d2)=fg+fh f \circ (g + h)=\sum_{d_{1} d_{2} =n} f(d_{1})(g(d_{2})+h(d_{2}))=\sum_{d_{1} d_{2} =n} f(d_{1})g(d_{2})+\sum_{d_{1} d_{2} =n} f(d_{1})h(d_{2})=f \circ g+f \circ h

數乘結合律

(sf)g=s(fg) (s \cdot f) \circ g=s \cdot (f \circ g)

證明

(sf)g=d1d2=n(sf(d1))g(d2)=sd1d2=nf(d1)g(d2) (s \cdot f) \circ g=\sum_{d_{1} d_{2} =n} (s\cdot f(d_{1}))g(d_{2})=s\sum_{d_{1} d_{2} =n}f(d_{1})g(d_{2})

證畢

積性的傳遞性

 f(n),g(n)\ f(n),g(n)爲積性 h=fg\ h=f \circ g也是積性的

       h(nm) =dnmf(d)g(nmd) =an,bmf(ab)g(nmab) =an,bmf(a)g(na)f(b)g(mb) ={anf(a)g(na)}{bmf(b)g(mb)} =h(n)h(m) \begin{array}{rcl} & &\,\,\,\,\,\,\,h(nm)\\\,\\ & &=\sum_{d \mid nm} f(d) g(\frac{nm}{d}) \\\,\\ & &=\sum_{a \mid n,b \mid m} f(ab)g(\frac{nm}{ab}) \\\,\\ & &=\sum_{a \mid n,b \mid m} f(a)g(\frac{n}{a}) f(b)g(\frac{m}{b}) \\\,\\ & &=\{ \sum_{a \mid n} f(a)g(\frac{n}{a}) \}\{ \sum_{b \mid m} f(b)g(\frac{m}{b}) \} \\\,\\ & &=h(n)h(m) \end{array}

證畢

 f\ f積性則 f1\ f^{-1}積性

證明

 nm>1\ nm>1時有 nm<nm,g(nm)=g(n)g(m)\ n'm' < nm,g(n'm')=g(n')g(m')成立
 f(n)\ f(n)的逆元 g(n)=1f(1)([n=1]in,inf(i)g(ni))\ g(n)=\frac{1}{f(1)} \left( \left[ n=1 \right] - \sum_{i \mid n,i \neq n}f(i) g(\frac{n}{i}) \right)
       g(nm) =dnm,d1f(d)g(nmd) =an,bm,ab1f(ab)g(nmab) =f(1)f(1)g(n)g(m)an,bm,ab1f(a)f(b)g(na)g(mb) =g(n)g(m){an,a1f(a)g(na)}{bm,b1f(b)g(mb)} =g(n)g(m)ϵ(n)ϵ(m) =g(n)g(m) \begin{array}{rcl} & &\,\,\,\,\,\,\,g(nm) \\\,\\ & &=- \sum_{d \mid nm,d \neq 1}f(d)g(\frac{nm}{d}) \\\,\\ & &=- \sum_{a \mid n,b \mid m,ab \neq 1} f(ab) g(\frac{nm}{ab}) \\\,\\ & &=f(1)f(1)g(n)g(m)- \sum_{a \mid n,b \mid m,ab \neq 1} f(a) f(b) g(\frac{n}{a}) g(\frac{m}{b}) \\\,\\ & &=g(n)g(m)- \{ \sum_{a \mid n,a \neq 1} f(a) g(\frac{n}{a}) \} \{ \sum_{b \mid m,b \neq 1} f(b) g(\frac{m}{b}) \}\\\,\\ & &=g(n)g(m)-\epsilon(n) \epsilon(m) \\\,\\ & &=g(n)g(m) \end{array}

證畢

應用

我們總可以證明求一個狄利克雷卷積的複雜度是 O(nlnn)\ O(n \ln n)的。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章