MATLAB實現高斯-克呂格投影反算

高斯投影(高斯-克呂格投影)的反算

更新2020-06,將座標系統統一換爲WGS-84座標系,整理一下腳本函數

高斯投影的反算是指由當地的局部座標系(x,y)轉換爲當地的地理座標系(B: 緯度, L: 經度)。由於之前的博文MATLAB實現高斯-克呂格投影正算已經對高斯投影進行過簡要的說明,故本博文不再對高斯-克呂格投影的原理進行介紹,只給出高斯投影反算的算法流程和實現的MATLAB腳本。本博文參考文獻資料如下:

[1] 孔祥元, 郭際明, 劉宗泉, 等. 大地測量學基礎(第二版)[M]. 武漢: 武漢大學出版社, 2009.
[2] 程鵬飛,成英燕,文漢江,等.2000國家大地座標系實用寶典[M]. 北京:測繪出版社, 2008.
[3] 牛麗娟. 測量座標轉換模型研究與轉換系統實現[D]. 長安大學, 2010.
[4] 李厚朴,邊少鋒.高斯投影的複變函數表示[J].測繪學報,2008(01):5-9

高斯投影反算公式

當地緯度BB的計算公式如下:

B=Bfρtf2Mfy(yNf)[1112(5+3tf2+ηf29ηf2tf2)(yNf)2+1360(61+90tf2+45tf4)(yNf)4]\begin{aligned} B=& B_{f}-\frac{\rho t_{f}}{2 M_{f}} y\left(\frac{y}{N_{f}}\right)\left[1-\frac{1}{12}\left(5+3 t_{f}^{2}+\eta_{f}^{2}-9 \eta_{f}^{2} t_{f}^{2}\right)\left(\frac{y}{N_{f}}\right)^{2}\right.\\ &+\left.\frac{1}{360}\left(61+90 t_{f}^{2}+45 t_{f}^{4}\right)\left(\frac{y}{N_{f}}\right)^{4}\right] \end{aligned}

y=0y=0時的緯度稱爲底點緯度BfB_f,底點緯度的迭代計算公式爲:

X=a0Ba22sin2B+a44sin4Ba66sin6B+a88sin8BX=a_{0} B-\frac{a_{2}}{2} \sin 2 B+\frac{a_{4}}{4} \sin 4 B-\frac{a_{6}}{6} \sin 6 B+\frac{a_{8}}{8} \sin 8 B其中,{a0=m0+12m2+38m4+516m6+35128m8a2=12m2+12m4+1532m6+716m8a4=18m4+316m6+732m8a6=132m6+116m8a8=1128m8;{m0=a(1e2)m2=32e2m0m4=54e2m2m6=76e2m4m8=98e2m6\left\{\begin{aligned} a_{0}=m_{0}+\frac{1}{2} m_{2}+\frac{3}{8} m_{4}+\frac{5}{16} m_{6}+\frac{35}{128} m_{8} \\ a_{2}=\frac{1}{2} m_{2}+\frac{1}{2} m_{4}+\frac{15}{32} m_{6}+\frac{7}{16} m_{8} \\ a_{4}=\frac{1}{8} m_{4}+\frac{3}{16} m_{6}+\frac{7}{32} m_{8} \\ a_{6}=\frac{1}{32} m_{6}+\frac{1}{16} m_{8} \\ a_{8}=\frac{1}{128} m_{8} \end{aligned};\quad \right. \left\{\begin{aligned} m_{0}=a(1-e^2) \\ m_{2}=\frac{3}{2} e^2 m_{0} \\ m_{4}=\frac{5}{4} e^2 m_{2}\\ m_{6}=\frac{7}{6} e^2 m_{4} \\ m_{8}=\frac{9}{8} e^2 m_{6} \end{aligned}\right.
BfB_f迭代計算過程爲:
迭代初始: 令Bf0=xa0B_f^0 = \frac{x}{a_0}
迭代過程: 令Fi=a22sin2Bfi+a44sin4Bfia66sin6Bfi+a88sin8BfiF^{i}=-\frac{a_{2}}{2} \sin 2 B_{f}^{i}+\frac{a_{4}}{4} \sin 4 B_{f}^{i}-\frac{a_{6}}{6} \sin 6 B_{f}^{i}+\frac{a_{8}}{8} \sin 8 B_{f}^{i}; 令Bfi+1=XFia0B_f^{i+1} = \frac{X-F^i}{a_0}
迭代停止: 當Bfi+1Bfi<ϵ|B_f^{i+1} - B_f^i|<\epsilon時則停止迭代.
注:ϵ\epsilon爲給定的閾值,閾值通常小於1E-8.

當地經度ll的計算公式如下:

l=ρcosBf(yNf)[116(1+2tf2+ηf2)(yNf)2+1120(5+28tf2+24tf4+6ηf2+8ηf2tf2)(yNf)4]\begin{aligned} l=& \frac{\rho}{\cos B_{f}}\left(\frac{y}{N_{f}}\right)\left[1-\frac{1}{6}\left(1+2 t_{f}^{2}+\eta_{f}^{2}\right)\left(\frac{y}{N_{f}}\right)^{2}+\frac{1}{120}\left(5+28 t_{f}^{2}\right.\right.\\ &+\left.\left.24 t_{f}^{4}+6 \eta_{f}^{2}+8 \eta_{f}^{2} t_{f}^{2}\right)\left(\frac{y}{N_{f}}\right)^{4}\right] \end{aligned}

上述式中:

  1. xx爲北方向的座標,
  2. yy爲東方向的座標(中國地區內需減去500000m),
  3. ρ=180×3600/π\rho=180×3600/\pi爲弧度秒,
  4. aa爲地球橢球長半徑,
  5. ee爲地球橢球第一偏心率,
  6. ee'爲地球橢球第二偏心率,
  7. NfN_f爲底點緯度BfB_f處地球的卯酉圈曲率半徑,
  8. MfM_f爲底點緯度BfB_f處地球的子午圈曲率半徑,
  9. ηf2=e2cos2Bf\eta_f^2 = e'^2cos^2{B_f}
  10. tf=tanBft_f=tan{B_f}

高斯投影反算的MATLAB函數

function Coord = GaussProInverse(Pos)
% INPUT // Units of longitude and latitude is RAD (°)
% REF[1]// 程鵬飛,等.2000國家大地座標系實用寶典[M].北京:測繪出版社,2008.
% REF[2]// 孔祥元,郭際明.大地測量學基礎(第二版)[M].武漢:武漢大學出版社,2010.
% Longitude of the Earth central meridian
MerLon = 114;          % Wuhan is 114 deg
% Extract the local projected coordinate (x & y)
Coord = Pos;
Eth.D2R = 0.0174532925199433;  % pi/180
x = Pos(1);
y = Pos(2) - 500000;
%% Earth orientation parameters of WGS 84 Coordinate System
Eth.R0 = 6378137.0;
Eth.f = 1/298.257223563;
Eth.Rp = 6356752.3142452;      % R0*(1 - f);
% First Eccentricity and its Squared
Eth.e12 = 0.006694379990141;   % (2f - f*f);
Eth.e11 = 0.081819190842622;   % sqrt(2f - f*f);
% Second Eccentricity and its Squared
Eth.e22 = 0.00673949674227643; % (2f - f*f)/(1 + f*f - 2*f);
Eth.e21 = 0.08209443794969570; % sqrt((2f - f*f)/(1 + f*f - 2*f));
Bf = Meridian2Latitude(x, Eth.R0, Eth.e12);
tnBf = tan(Bf); tn2Bf = tnBf*tnBf; tn4Bf = tn2Bf*tn2Bf;
csBf = cos(Bf); cs2Bf = csBf*csBf; Eta2 = Eth.e22*cs2Bf;
COE = sqrt(1 - Eth.e12*sin(Bf)*sin(Bf));
Nf = Eth.R0/COE;
Mf = Eth.R0*(1 - Eth.e12)/COE^3;
%% Calculate Latitude(B)
YNf = y/Nf;
YNf2 = YNf*YNf;
YNf4 = YNf2*YNf2;
TYMN = 0.5*tnBf*y*YNf/Mf;
COE1 = (5 + 3*tn2Bf + Eta2 -9*Eta2*tn2Bf)*YNf2/12;
COE2 = (61 + 90*tn2Bf + 45*tn4Bf)*YNf4/360;
Lat = Bf - TYMN*(1 - COE1 + COE2);
%% Calculate Longitude(L)
YBNf = YNf/csBf;
COE3 = (1 + 2*tn2Bf + Eta2)*YNf2/6;
COE4 = (5 + 28*tn2Bf + 24*tn4Bf + 6*Eta2 + 8*Eta2*tn2Bf)*YNf4/120;
Lon = MerLon*Eth.D2R + YBNf*(1 - COE3 + COE4);
Coord(1) = Lat/Eth.D2R;
Coord(2) = Lon/Eth.D2R;
end

function Bf = Meridian2Latitude(x,a,e12)
m0 = a*(1 - e12);    m2 = 3*e12*m0/2;
m4 = 5*e12*m2/4;     m6 = 7*e12*m4/6;
m8 = 9*e12*m6/8;     a8 = m8/128;
a6 = m6/32 + m8/16;  a4 = m4/8 + 3*m6/16 + 7*m8/32;
a0 = m0 + m2/2 + 3*m4/8 + 5*m6/16 + 35*m8/128;
a2 = m2/2 + m4/2 + 15*m6/32 + 7*m8/16;
B0 = x/a0;
while 1
    F = -a2*sin(2*B0)/2 + a4*sin(4*B0)/4 - a6*sin(6*B0)/6 + a8*sin(8*B0)/8;
    Bf = (x - F)/a0;
    if abs(B0 - Bf)<1e-10
        break;
    end
    B0 = Bf;
end
end
該方法爲經典的高斯反算的算法,對於高斯反算的詳細推導可以參考大地測量的教材或者最新的文獻。
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章