初等數論 1.6 最大公因數

定義:設a1,a2,dZa_1,a_2,d\in\Z,若da1,da2d\mid a_1,d\mid a_2,則稱dda1a_1a2a_2的公因數(common divisor).
一般地,設a1,a2, ,an,dZa_1,a_2,\cdots,a_n,d\in\Z,若daid\mid a_i1in\forall1\le i \le n成立,則稱dda1,a2, ,ana_1,a_2,\cdots,a_n的公因數.
定義:設a1,a2Za_1,a_2\in\Z不全爲00,稱a1,a2a_1,a_2公因數中最大者爲a1,a2a_1,a_2的最大公因數(greatest common divisor),記做gcd(a1,a2)gcd(a_1,a_2)(a1,a2)(a_1,a_2).
一般地,設a1,a2, ,anZa_1,a_2,\cdots,a_n\in\Z不全爲00,稱a1,a2, ,ana_1,a_2,\cdots,a_n公因數中最大者爲a1,a2, ,ana_1,a_2,\cdots,a_n的最大公因數,記做gcd(a1,a2, ,an)gcd(a_1,a_2,\cdots,a_n)(a1,a2, ,an)(a_1,a_2,\cdots,a_n).

dda1,a2, ,ana_1,a_2,\cdots,a_n的公因數,則d-d也是a1,a2, ,ana_1,a_2,\cdots,a_n的公因數.所以(a1,a2, ,an)Z+(a_1,a_2,\cdots,a_n)\in\Z^+.

定義:若(a1,a2)=1(a_1,a_2)=1,則稱a1,a2a_1,a_2互素.
一般地,若(a1,a2, ,an)=1(a_1,a_2,\cdots,a_n)=1,則稱a1,a2, ,ana_1,a_2,\cdots,a_n互素.

a1,a2, ,ana_1,a_2,\cdots,a_n兩兩互素,則(a1,a2, ,an)=1(a_1,a_2,\cdots,a_n)=1.
a,bZa,b\in\Z不全爲00,則k(a,b)kZ=ma+nbm,nZ\displaystyle {k(a,b)\mid k\in\Z}={ma+nb\mid m,n\in\Z}

定理:設a1,a2, ,anZa_1,a_2,\cdots,a_n\in\Z,記A=yy=i=1naixi,xiZ,1in\displaystyle A={y\mid y=\sum_{i=1}^{n}{a_ix_i},\quad x_i\in\Z,\quad 1\le i \le n},則(a1,a2, ,an)(a_1,a_2,\cdots,a_n)AA中最小的正整數.
推論:(Bezout定理):設a1,a2, ,anZa_1,a_2,\cdots,a_n\in\Z不全爲00,則x1,x2, ,xnZ\exists x_1,x_2,\cdots,x_n\in\Z,使得i=1naixi=(a1,a2, ,an)\displaystyle \sum_{i=1}^{n}{a_ix_i}=(a_1,a_2,\cdots,a_n).
推論:若daid\mid a_i1in\forall 1\le i \le n成立,則d(a1,a2, ,an)d\mid (a_1,a_2,\cdots,a_n).
一般地,若biaib_i\mid a_i1in\forall 1\le i \le n成立,則(b1,b2, ,bn)(a1,a2, ,an)(b_1,b_2,\cdots,b_n)\mid (a_1,a_2,\cdots,a_n).
推論:若a1,a2, ,anZa_1,a_2,\cdots,a_n\in\Z不全爲00,對mZ\forall m\in\Zx1,x2, ,xnZ\exists x_1,x_2,\cdots,x_n\in\Z,使得i=1naixi=m\displaystyle \sum_{i=1}^{n}{a_ix_i}=m當且僅當(a1,a2, ,an)m(a_1,a_2,\cdots,a_n)\mid m.

i=1naIxi=1\displaystyle \sum_{i=1}^{n}{a_Ix_i}=1當且僅當(a1,a2, ,an)=1(a_1,a_2,\cdots,a_n)=1.

定理:最大公因數的一些性質:
1.(a,b)=(b,a)=(a,b)(a,b)=(b,a)=(\lvert a \rvert , \lvert b \rvert ).
1’.(a1,a2, ,an)=(ai1,ai2, ,ain)=(a1,a2, ,an)(a_1,a_2,\cdots,a_n)=(a_{i_1},a_{i_2},\cdots,a_{i_n})=(\lvert a_1 \rvert , \lvert a_2 \rvert , \cdots , \lvert a_n \rvert ).其中,(i1,i2, ,in)(i_1,i_2,\cdots,i_n)(1,2, ,n)(1,2,\cdots,n)的一個排列.
2.若a0a\neq 0,則(a,0)=a(a,a)=a(a,0)=a\quad (a,a)=\lvert a \rvert.

一般地,(0,a2, ,an)=(a2, ,an)(0,a_2,\cdots,a_n)=(a_2,\cdots,a_n).

3.若bab\mid a,則(a,b)=b(a,b)=\lvert b \rvert,且對cZ\forall c\in\Z,有(b,c)(a,c)(b,c)\mid (a,c).
4.(a1,a2)=(a1,a2+ka1)kZ(a_1,a_2)=(a_1,a_2+ka_1)\quad \forall k\in\Z.
4’.(a1,a2, ,an)=(a1,a2+k2a1, ,an+kna1)k2, ,knZ(a_1,a_2,\cdots,a_n)=(a_1,a_2+k_2a_1,\cdots,a_n+k_na_1)\quad \forall k_2,\cdots,k_n \in\Z.
5.若a=bq+ra=bq+r,則(a,b)=(b,r)q,rZ(a,b)=(b,r)\quad q,r\in\Z.
6.(ma,mb)=m(a,b)(ma,mb)=\lvert m \rvert (a,b),其中m0m\neq 0.
6’.(ma1,ma2, ,man)=m(a1,a2, ,an)(ma_1,ma_2,\cdots,ma_n)=\lvert m \rvert (a_1,a_2,\cdots,a_n).
7.(a(a,b),b(a,b))=1\displaystyle (\frac{a}{(a,b)},\frac{b}{(a,b)})=1.
7’.(a1(a1,a2, ,an),a2(a1,a2, ,an), ,an(a1,a2, ,an))=1\displaystyle (\frac{a_1}{(a_1,a_2,\cdots,a_n)},\frac{a_2}{(a_1,a_2,\cdots,a_n)},\cdots,\frac{a_n}{(a_1,a_2,\cdots,a_n)})=1.
8.設a,b,cZa,b,c\in\Z,若bacb\mid ac(a,b)=1(a,b)=1,則bcb\mid c.

acbca\mid c,b\mid c(a,b)=1(a,b)=1,則abcab\mid c.
(a,b)=1(a,b)=1,則(a,bc)=(a,c)(a,bc)=(a,c).

8’.(ai,bj)=11im1jn\displaystyle (a_i,b_j)=1 \quad 1\le i \le m \quad 1\le j \le n,則(a1a2an,b1b2bn)=1(a_1a_2\cdots a_n,b_1b_2\cdots b_n)=1.

對於m,nZ(a,b)=1\forall m,n\in\Z,(a,b)=1當且僅當(am,bn)=1(a^m,b^n)=1.

8’’.設a,bZa,b\in\Z不全爲00nZ+n\in\Z^+,則(an,bn)=(a,b)n(a^n,b^n)=(a,b)^n.
8’’’.設a,bZa,b\in\Zaba\mid b當且僅當anbna^n\mid b^n.
定義:與公因子相似,設a,bZa,b\in\Z均不爲00,若a1m,a2ma_1\mid m,\quad a_2\mid m,則稱mma1,a2a_1,a_2的公倍數.
一般地,非零整數a1,a2, ,ana_1,a_2,\cdots,a_n的公倍數中的最小正整數稱爲a1,a2, ,ana_1,a_2,\cdots,a_n的最小公倍數(least common multiple).記爲[a1,a2, ,an]\displaystyle [a_1,a_2,\cdots,a_n].

最小公倍數和最大公因數有相似的性質.

定理:設a,bZa,b\in\Z均不爲00,則(a,b)[a,b]=ab\displaystyle(a,b)[a,b]=\lvert ab \rvert.
定義:設aZa\in\Za>1a>1.若aa的正因數只有11aa,則稱aa爲素數(prime number).否則稱aa爲合數.

定義:π(x)\pi(x)表示小於或等於某個實數xx的素數個數.

定理:設aZa\in\Za>1a>1,則aa的除11以外的最小正因數爲素數,且aa爲合數時,必有qa\displaystyle q\le \sqrt{a}.
推論(Eratosthenes篩法):若大於11的整數aa不能被任何不超過a\displaystyle \sqrt{a}的素數整除,則aa必爲素數.
定理:素數有無窮多個.

證明:設Z+\Z^+中只有有限個素數p1,p2, ,pkp_1,p_2,\cdots,p_k,考慮a=p1p2pk+1a=p_1p_2\cdots p_k+1,顯然a>1a>1,aa有素因數pp,且pp1,p2, ,pk\displaystyle p\in{p_1,p_2,\cdots,p_k},則pp1p2pkp\mid p_1p_2\cdots p_k.由pap\mid ap=±1p=\pm 1.與pp是素數矛盾,所以素數有無窮多個.

定理:設pp是素數,aZa\in\Z,則pap\mid a(p,a)=1(p,a)=1.
推論:設pp是素數,a1,a2, ,anZa_1,a_2,\cdots,a_n\in\Z,若pa1a2anp\mid a_1a_2\cdots a_n,則ai1in\exists a_i \quad 1\le i \le n,使得paip\mid a_i.

pp爲素數,pan(n1)\displaystyle p\mid a^n \quad (n\ge 1)當且僅當pap\mid a.

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章