PID調節經驗

Kp: 比例係數 ----- 比例帶(比例度)P:輸入偏差信號變化的相對值與輸出信號變化的相對值之比的百分數表示  (比例係數的倒數)

T:採樣時間

Ti: 積分時間

Td: 微分時間

 

溫度T: P=20~60%,Ti=180~600s,Td=3-180s 
壓力P: P=30~70%,Ti=24~180s, 
液位L: P=20~80%,Ti=60~300s, 
流量L: P=40~100%,Ti=6~60s。 

 

(1)一般來說,在整定中,觀察到曲線震盪很頻繁,需把比例帶增大以減少震盪;當曲線最大偏差大且趨於非週期過程時,需把比例帶減少

(2)當曲線波動較大時,應增大積分時間;曲線偏離給定值後,長時間回不來,則需減小積分時間,以加快消除餘差。

(3)如果曲線震盪的厲害,需把微分作用減到最小,或暫時不加微分;曲線最大偏差大而衰減慢,需把微分時間加長而加大作用

(4)比例帶過小,積分時間過小或微分時間過大,都會產生週期性的激烈震盪。積分時間過小,震盪週期較長;比例帶過小,震盪週期較短;微分時間過大,震盪週期最短

(5)比例帶過大或積分時間過長,都會使過渡過程變化緩慢。比例帶過大,曲線如不規則的波浪較大的偏離給定值。積分時間過長,曲線會通過非週期的不正常途徑,慢慢回覆到給定值。

注意:當積分時間過長或微分時間過大,超出允許的範圍時,不管如果改變比例帶,都是無法補救的

 

1. PID調試步驟 
  沒有一種控制算法比PID調節規律更有效、更方便的了。現在一些時髦點的調節器基本源自PID。甚至可以這樣說:PID調節器是其它控制調節算法的嗎。 
  爲什麼PID應用如此廣泛、又長久不衰? 
因爲PID解決了自動控制理論所要解決的最基本問題,既系統的穩定性、快速性和準確性。調節PID的參數,可實現在系統穩定的前提下,兼顧系統的帶載能力和抗擾能力,同時,在PID調節器中引入積分項,系統增加了一個零積點,使之成爲一階或一階以上的系統,這樣系統階躍響應的穩態誤差就爲零。
  由於自動控制系統被控對象的千差萬別,PID的參數也必須隨之變化,以滿足系統的性能要求。這就給使用者帶來相當的麻煩,特別是對初學者。下面簡單介紹一下調試PID參數的一般步驟:
  1.負反饋 
  自動控制理論也被稱爲負反饋控制理論。首先檢查系統接線,確定系統的反饋爲負反饋。例如電機調速系統,輸入信號爲正,要求電機正轉時,反饋信號也爲正(PID算法時,誤差=輸入-反饋),同時電機轉速越高,反饋信號越大。其餘系統同此方法。
 2.PID調試一般原則 
  a.在輸出不振盪時,增大比例增益P。 
  b.在輸出不振盪時,減小積分時間常數Ti。 
  c.在輸出不振盪時,增大微分時間常數Td。 
  3.一般步驟 
  a.確定比例增益P 
  確定比例增益P 時,首先去掉PID的積分項和微分項,一般是令Ti=0、Td=0(具體見PID的參數設定說明),使PID爲純比例調節。輸入設定爲系統允許的最大值的60%~70%,由0逐漸加大比例增益P,直至系統出現振盪;再反過來,從此時的比例增益P逐漸減小,直至系統振盪消失,記錄此時的比例增益P,設定PID的比例增益P爲當前值的60%~70%。比例增益P調試完成。
  b.確定積分時間常數Ti 
  比例增益P確定後,設定一個較大的積分時間常數Ti的初值,然後逐漸減小Ti,直至系統出現振盪,之後在反過來,逐漸加大Ti,直至系統振盪消失。記錄此時的Ti,設定PID的積分時間常數Ti爲當前值的150%~180%。積分時間常數Ti調試完成。
  c.確定微分時間常數Td 
  積分時間常數Td一般不用設定,爲0即可。若要設定,與確定 P和Ti的方法相同,取不振盪時的30%。 
  d.系統空載、帶載聯調,再對PID參數進行微調,直至滿足要求。 
2.PID控制簡介 
目前工業自動化水平已成爲衡量各行各業現代化水平的一個重要標誌。同時,控制理論的發展也經歷了古典控制理論、現代控制理論和智能控制理論三個階段。智能控制的典型實例是模糊全自動洗衣機等。自動控制系統可分爲開環控制系統和閉環控制系統。一個控制系統包括控制器﹑傳感器﹑變送器﹑執行機構﹑輸入輸出接口。控制器的輸出經過輸出接口﹑執行機構﹐加到被控系統上﹔控制系統的被控量﹐經過傳感器﹐變送器﹐通過輸入接口送到控制器。不同的控制系統﹐其傳感器﹑變送器﹑執行機構是不一樣的。比如壓力控制系統要採用壓力傳感器。電加熱控制系統的傳感器是溫度傳感器。目前,PID控制及其控制器或智能PID控制器(儀表)已經很多,產品已在工程實際中得到了廣泛的應用,有各種各樣的PID控制器產品,各大公司均開發了具有PID參數自整定功能的智能調節器(intelligent regulator),其中PID控制器參數的自動調整是通過智能化調整或自校正、自適應算法來實現。有利用PID控制實現的壓力、溫度、流量、液位控制器,能實現PID控制功能的可編程控制器(PLC),還有可實現PID控制的PC系統等等。 可編程控制器(PLC) 是利用其閉環控制模塊來實現PID控制,而可編程控制器(PLC)可以直接與ControlNet相連,如Rockwell的PLC-5等。還有可以實現PID控制功能的控制器,如Rockwell 的Logix產品系列,它可以直接與ControlNet相連,利用網絡來實現其遠程控制功能。
  1、開環控制系統 
  開環控制系統(open-loop control system)是指被控對象的輸出(被控制量)對控制器(controller)的輸出沒有影響。在這種控制系統中,不依賴將被控量反送回來以形成任何閉環迴路。
 2、閉環控制系統 
  閉環控制系統(closed-loop control system)的特點是系統被控對象的輸出(被控制量)會反送回來影響控制器的輸出,形成一個或多個閉環。閉環控制系統有正反饋和負反饋,若反饋信號與系統給定值信號相反,則稱爲負反饋( Negative Feedback),若極性相同,則稱爲正反饋,一般閉環控制系統均採用負反饋,又稱負反饋控制系統。閉環控制系統的例子很多。比如人就是一個具有負反饋的閉環控制系統,眼睛便是傳感器,充當反饋,人體系統能通過不斷的修正最後作出各種正確的動作。如果沒有眼睛,就沒有了反饋迴路,也就成了一個開環控制系統。另例,當一臺真正的全自動洗衣機具有能連續檢查衣物是否洗淨,並在洗淨之後能自動切斷電源,它就是一個閉環控制系統。
  3、階躍響應 
  階躍響應是指將一個階躍輸入(step function)加到系統上時,系統的輸出。穩態誤差是指系統的響應進入穩態後﹐系統的期望輸出與實際輸出之差。控制系統的性能可以用穩、準、快三個字來描述。穩是指系統的穩定性(stability),一個系統要能正常工作,首先必須是穩定的,從階躍響應上看應該是收斂的﹔準是指控制系統的準確性、控制精度,通常用穩態誤差來(Steady-state error)描述,它表示系統輸出穩態值與期望值之差﹔快是指控制系統響應的快速性,通常用上升時間來定量描述。
  4、PID控制的原理和特點 
  在工程實際中,應用最爲廣泛的調節器控制規律爲比例、積分、微分控制,簡稱PID控制,又稱PID調節。PID控制器問世至今已有近70年曆史,它以其結構簡單、穩定性好、工作可靠、調整方便而成爲工業控制的主要技術之一。當被控對象的結構和參數不能完全掌握,或得不到精確的數學模型時,控制理論的其它技術難以採用時,系統控制器的結構和參數必須依靠經驗和現場調試來確定,這時應用PID控制技術最爲方便。即當我們不完全瞭解一個系統和被控對象﹐或不能通過有效的測量手段來獲得系統參數時,最適合用PID控制技術。PID控制,實際中也有PI和PD控制。PID控制器就是根據系統的誤差,利用比例、積分、微分計算出控制量進行控制的。
  比例(P)控制 
  比例控制是一種最簡單的控制方式。其控制器的輸出與輸入誤差信號成比例關係。當僅有比例控制時系統輸出存在穩態誤差(Steady-state error)。 
  積分(I)控制 
  在積分控制中,控制器的輸出與輸入誤差信號的積分成正比關係。對一個自動控制系統,如果在進入穩態後存在穩態誤差,則稱這個控制系統是有穩態誤差的或簡稱有差系統(System with Steady-state Error)。爲了消除穩態誤差,在控制器中必須引入“積分項”。積分項對誤差取決於時間的積分,隨着時間的增加,積分項會增大。這樣,即便誤差很小,積分項也會隨着時間的增加而加大,它推動控制器的輸出增大使穩態誤差進一步減小,直到等於零。因此,比例+積分(PI)控制器,可以使系統在進入穩態後無穩態誤差。
  微分(D)控制 
  在微分控制中,控制器的輸出與輸入誤差信號的微分(即誤差的變化率)成正比關係。 自動控制系統在克服誤差的調節過程中可能會出現振盪甚至失穩。其原因是由於存在有較大慣性組件(環節)或有滯後(delay)組件,具有抑制誤差的作用,其變化總是落後於誤差的變化。解決的辦法是使抑制誤差的作用的變化“超前”,即在誤差接近零時,抑制誤差的作用就應該是零。這就是說,在控制器中僅引入“比例”項往往是不夠的,比例項的作用僅是放大誤差的幅值,而目前需要增加的是“微分項”,它能預測誤差變化的趨勢,這樣,具有比例+微分的控制器,就能夠提前使抑制誤差的控制作用等於零,甚至爲負值,從而避免了被控量的嚴重超調。所以對有較大慣性或滯後的被控對象,比例+微分(PD)控制器能改善系統在調節過程中的動態特性。
  5、PID控制器的參數整定 
  PID控制器的參數整定是控制系統設計的核心內容。它是根據被控過程的特性確定PID控制器的比例係數、積分時間和微分時間的大小。PID控制器參數整定的方法很多,概括起來有兩大類:一是理論計算整定法。它主要是依據系統的數學模型,經過理論計算確定控制器參數。這種方法所得到的計算數據未必可以直接用,還必須通過工程實際進行調整和修改。二是工程整定方法,它主要依賴工程經驗,直接在控制系統的試驗中進行,且方法簡單、易於掌握,在工程實際中被廣泛採用。PID控制器參數的工程整定方法,主要有臨界比例法、反應曲線法和衰減法。三種方法各有其特點,其共同點都是通過試驗,然後按照工程經驗公式對控制器參數進行整定。但無論採用哪一種方法所得到的控制器參數,都需要在實際運行中進行最後調整與完善。現在一般採用的是臨界比例法。利用該方法進行 PID控制器參數的整定步驟如下:(1)首先預選擇一個足夠短的採樣週期讓系統工作﹔(2)僅加入比例控制環節,直到系統對輸入的階躍響應出現臨界振盪,記下這時的比例放大係數和臨界振盪週期﹔(3)在一定的控制度下通過公式計算得到PID控制器的參數。
3.PID控制器參數的工程整定,各種調節系統中PID參數經驗數據以下可參照: 
溫度T: P=20~60%,T=180~600s,D=3-180s 
壓力P: P=30~70%,T=24~180s, 
液位L: P=20~80%,T=60~300s, 
流量L: P=40~100%,T=6~60s。 
4. PID常用口訣: 
參數整定找最佳,從小到大順序查 
先是比例後積分,最後再把微分加 
曲線振盪很頻繁,比例度盤要放大 
曲線漂浮繞大灣,比例度盤往小扳 
曲線偏離回覆慢,積分時間往下降 
曲線波動週期長,積分時間再加長 
曲線振盪頻率快,先把微分降下來 
動差大來波動慢。微分時間應加長 
理想曲線兩個波,前高後低4比1 
一看二調多分析,調節質量不會低 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章