人工智能教程 - 數學基礎課程1.1 - 數學分析(一)15-17 微分方程和分離變量,定積分及性質,微積分第一定理

微分方程 differential equation

Ex:

dydx=f(x)\frac{dy}{dx} = f(x)

y=f(x)dxy= \int f(x) dx

solved substitution

Ex2:

(ddx+x)(\frac{d}{dx}+x)爲annihilation operator 湮沒算符 in quantum mechnics

dydx=xy\frac{dy}{dx} = -xy

dyy=xdx\frac{dy}{y} = -xdx

dyy=xdx\int \frac{dy}{y} = -\int xdx

lny=x2/2+Cln y = -x^2/2 +C

elny=ex2/2+Ce^{lny} = e^{-x^2/2}+C

y=Aex2/2(A=ec)y = Ae^{-x^2/2} (A=e^c)

Solution:

y=aex2/2 any ay = ae^{-x^2/2} \ any \ a

dydx=a.ddx.ex2/2\frac{dy}{dx} = a.\frac{d}{dx} . e^{-x^2/2}

=a.(x).ex2/2= a.(-x) . e^{-x^2/2}

=x.y= -x.y

by the way,the function is known as the normal distribution 正態分佈

分離變量法

SEPARATION OF VARIABLES

dydx=f(x).g(y)\frac{dy}{dx} = f(x).g(y)

dyg(y)=f(x)dx\frac{dy}{g(y)} = f(x)dx

H(y)=dyg(y);F(x)=f(x)dxH(y) = \int \frac{dy}{g(y)}; F(x) = \int f(x)dx

H(y)=F(x)+CimplicitH(y)=F(x)+C \rightarrow implicit

y=H1(F(x)+C)y = H^{-1}(F(x)+C)


定積分

Definite Integrals

Find Area under a curve =abf(x)dx\int_{a}^{b} f(x) dx

累積和(cumulative sum)

To compute the area
  1. divide into rectangles
  2. add up areas
  3. take the limit as rectangles get thin
簡寫 abbreviation

i=1nai=a1+a2+...+an\sum_{i=1}^{n} a_i = a_1+a_2+...+a_n

\sum is called sigma

Notation (Riemann Sums)

General Procedure for definite integrals:

Δx=ban\Delta x = \frac{b-a}{n}

Pick any height of f in each interval:

i=1nf(ci)Δxabf(x)dx{\color{Red} \sum_{i=1}^{n} f(c_i) \Delta x\rightarrow \int_{a}^{b} f(x)dx}


微積分第一定理

Fundamental theorem of calculus(FTC1)
If F’(x) = f(x), then

abf(x)dx=F(b)F(a)=F(x)ab{\color{Red} {\color{Red} \int_{a}^{b} f(x)dx = F(b)-F(a)}=F(x)|_{a}^{b}}

F=f(x)dxF=\int f(x)dx

NOTATION

F(b)F(a)=F(x)ab=F(x)x=ax=bF(b) - F(a) = F(x)|_{a}^{b} = F(x)|_{x=a}^{x=b}

Ex1:

F(x)=x3/3F(x) = x^3/3

F(x)=x2(=f(x))F'(x) = x^2(=f(x))

abx2dx=F(b)F(a)=b33a33\int_{a}^{b}x^2dx = F(b)-F(a)=\frac{b^3}{3}-\frac{a^3}{3}

0bx2dx=x330b=b33\int_{0}^{b}x^2dx = \frac{x^3}{3}|_{0}^{b}=\frac{b^3}{3}

True geometric interp of definit integral is that area above x-axis minus the area below the x-axis

定積分的性質

Properties of integrals

1.ab(f(x)+g(x))dx=abf(x)dx+abg(x)dx1.\int_{a}^{b}(f(x)+g(x))dx = \int_{a}^{b}f(x)dx +\int_{a}^{b}g(x)dx

2.abCf(x)dx=Cabf(x)dx2.\int_{a}^{b}Cf(x)dx = C\int_{a}^{b}f(x)dx

3.abf(x)dx+bcf(x)dx=acf(x)dx  (a<b<c)3.\int_{a}^{b}f(x)dx +\int_{b}^{c}f(x)dx = \int_{a}^{c}f(x)dx \ \ (a<b<c)

4.aaf(x)dx=04.\int_{a}^{a}f(x)dx = 0

5.abf(x)dx=baf(x)dx5.\int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx

6. (Estimation)If f(x)<=g(x),then:abf(x)dxabg(x)dx\int_{a}^{b}f(x)dx \leq \int_{a}^{b}g(x)dx

change of variables: (=substituion)

u1u2g(u)dx=x1x2g(u(x)).u(x)dx{\color{Red} \int_{u_1}^{u_2}g(u)dx = \int_{x_1}^{x_2}g(u(x)).u'(x)dx}

u = u(x) u1 = u(x1)
du = u’(x)dx u2 = u(x2)
Only works if u’ does not change sign
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章