人工智能教程 - 數學基礎課程1.1 - 數學分析(一)34-35 泰勒級數

泰勒級數在這裏插入圖片描述

在這裏插入圖片描述

CN+1=NCN+1(CN+1)N+1(N+1)CN+1N+1C_{N+1}=\frac{NC_N+1(C_N+1)}{N+1}-\frac{(N+1)C_N+1}{N+1}

Center of mass of N+1 blocks

X-coordinate

CN+1=CN+1N+1C_{N+1}=C_N+\frac{1}{N+1}

C1=1C_1=1
C2=1+12C_2=1+\frac{1}{2}
C3=C2+13=1+12+13C_3=C_2+\frac{1}{3}=1+\frac{1}{2}+\frac{1}{3}
CN=1+12+13+14+...+1NC_N=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{N}

CN=SNC_N=S_N
lnN<SN<(lnN)+1lnN<S_N<(lnN)+1
as  N,lnN  and  SNas \ \ N\rightarrow \infty,lnN\rightarrow \infty \ \ and \ \ S_N \rightarrow \infty

Power Series

1+x+x2+x3+...=11x1+x+x^2+x^3+...=\frac{1}{1-x}

|x|<1 (geometric series)

(converge)

(1+x+x2)=S(1+x+x^2) =S
x+x2+x3+...=Sxx+x^2+x^3+... =Sx
1=SSx=S(1x)1=S-Sx =S(1-x)

Resoning incomplete because it requires S exists

General Power Series

a0+a1x+a2x2+a3x3+...=n=0anxna_0+a_1x+a_2x^2+a_3x^3+... =\sum_{n=0}^{\infty}a_nx^n

|x|<R(radius of convergence)
(-R<x<R)

where series convergence anxn\sum a_nx^n diverge

|x|>R very delicate borderline(很微妙的邊界)—not used by us

anxn0|a_nx^n|\rightarrow 0 exponentially fast |x|<R

anxn0|a_nx^n|\neq \rightarrow 0 for |x|>R

Rules for conergant power series are just like polynomials
f(x)+g(x),f(x).g(x),f(g(x)),f(x)/g(x)

ddxf(x),f(x)dx\frac{d}{dx}f(x),\int f(x)dx

ddx(a0+a1x+a2x2+a3x3+...)=a1+2a2x+3a3x2+...\frac{d}{dx}(a_0+a_1x+a_2x^2+a_3x^3+...)=a_1+2a_2x+3a_3x^2+...
(a0+a1x+a2x2+...)dx=c+a0+a1x2/2+a2x3/3+...\int(a_0+a_1x+a_2x^2+...)dx=c+a_0+a_1x^2/2+a_2x^3/3+...

Taylor’s formula:

f(x)=n=0f(n)(0)n!xnf(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n


級數

f(x)=f(0)+f(0)x+f(0)2!x2+...\LARGE f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+...

Ex: (Euler歐拉)

x=0
f(x)=exf(x)=e^x 1
f(x)=exf'(x)=e^x 1
f(x)=exf''(x)=e^x 1

ex=1+x+x22!+x33!+...\LARGE e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...

Ex2:

11+x=1x+x2x3+...\LARGE \frac{1}{1+x}=1-x+x^2-x^3+...

Ex3:

sin(x)=xx33!+x55!...\LARGE sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-...

New Power Series From Old

1). Multiply

xsin(x)=x2x43!+x65!...\LARGE xsin(x)=x^2-\frac{x^4}{3!}+\frac{x^6}{5!}-...

2). Differentiate求導

cos(x)=sin(x)=13x23!+5x45!...=1x22+x44!...\LARGE cos(x)=sin'(x)=1-\frac{3x^2}{3!}+\frac{5x^4}{5!}-...\LARGE =1-\frac{x^2}{2}+\frac{x^4}{4!}-...

3). Integrate:

ln(1+x)=0xdt1+t\LARGE ln(1+x)=\int_{0}^{x}\frac{dt}{1+t}

(x>1)=0x(1t+t2+t3+...)dt\LARGE (x>-1)=\int_0^x(1-t+t^2+t^3+...)dt

=[tt22+t33t44+...]0x\LARGE =[t-\frac{t^2}{2}+\frac{t^3}{3}-\frac{t^4}{4}+...]|_0^x

ln(1+x)=[xx22+x33x44+...](R=1)\LARGE ln(1+x)=[x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...](R=1)

4).Substitue:

et2\LARGE e^{-t^2}(x=t2;in  ex)\LARGE (x=-t^2;in \ \ e^x)

=1t2+t42!+t63!...\LARGE =1-t^2+\frac{t^4}{2!}+\frac{t^6}{3!}-...

Erf(x)=2π0xet2dx=2π(xx33+x55.2!737.3!+...)\LARGE Er f(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{-t^2}dx\LARGE =\frac{2}{\sqrt{\pi}}(x-\frac{x^3}{3}+\frac{x^5}{5.2!}-\frac{7^3}{7.3!}+...)

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章